Sistema y método para la interpretación de la imaginación motora de los movimientos de ponerse de pie y sentarse basado en interfaz cerebro computadora

dc.contributor.advisorJutinico Alarcón, Andrés Leonardospa
dc.contributor.advisorOrjuela Cañón, Álvaro Davidspa
dc.contributor.advisorReyes Guzmán, Edwin Alfredospa
dc.contributor.authorTriana Guzmán, Nayidspa
dc.creator.cedula13001825736spa
dc.date.accessioned2023-05-18T20:45:06Z
dc.date.available2023-05-18T20:45:06Z
dc.date.issued2022-12-07spa
dc.description.abstractBrain-computer interface (BCI) systems based on electroencephalography (EEG) and motor imagination (MI), have shown promising advances for the motor rehabilitation of lower extremities. However, in the state of the art there has been little explored about the MR of the lower limb, especially little is known about MR for standing and sitting. By Therefore, this paper presents an EEG-based ICC system for MI interpretation of these types of movements. The purpose of this system is to restore some mobility to people with disorders severe neuromuscular disorders that cannot exert the force required to move the physical interface (mouse, keyboard, joystick, microphone, or other peripherals) that use standing devices to perform transition from sitting to bipedal positioneng
dc.description.abstractLos sistemas de interfaz cerebro-computadora (ICC) basados en electroencefalografía (EEG) e imaginación motora (IM), han mostrado avances prometedores para la rehabilitación motriz de las extremidades inferiores. Sin embargo, en el estado del arte ha sido poco explorado sobre la IM del miembro inferior, especialmente se sabe poco acerca de la IM para la bipedestación y la sedestación. Por lo tanto, este trabajo presenta un sistema de ICC basado en EEG para la interpretación de la IM de estos tipos de movimientos. El propósito de este sistema es devolver cierta movilidad a personas con trastornos neuromusculares graves que no pueden imprimir la fuerza que se requiere para mover la interfaz física (ratón, teclado, joystick, micrófono, u otros periféricos) que usan dispositivos bipedestadores para realizar la transición de la posición sedente-bípedaspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor(a) en Ciencia Aplicadaspa
dc.description.degreetypeInvestigaciónspa
dc.description.notesPresencialspa
dc.identifier.bibliographicCitationAbdulkader, S. N., Atia, A., & Mostafa, M.-S. M. (2015). Brain computer interfacing: Applications and challenges. Egyptian Informatics Journal, 16(2), 213–230. https://doi.org/10.1016/j.eij.2015.06.002spa
dc.identifier.bibliographicCitationAbiri, R., Borhani, S., Sellers, E. W., Jiang, Y., & Zhao, X. (2019). A comprehensive review of EEG-based brain–computer interface paradigms. Journal of Neural Engineering, 16(1), 1–43. https://doi.org/10.1088/1741-2552/aaf12espa
dc.identifier.bibliographicCitationAggarwal, S., & Chugh, N. (2019). Signal processing techniques for motor imagery brain computer interface: A review. Array, 1–2, 1–12. https://doi.org/10.1016/j.array.2019.100003spa
dc.identifier.bibliographicCitationAggarwal, S., & Chugh, N. (2022). Review of Machine Learning Techniques for EEG Based Brain Computer Interface. Archives of Computational Methods in Engineering, 29(5), 3001–3020. https://doi.org/10.1007/s11831-021-09684-6spa
dc.identifier.bibliographicCitationAhn, M., Lee, M., Choi, J., & Jun, S. (2014). A Review of Brain-Computer Interface Games and an Opinion Survey from Researchers, Developers and Users. Sensors, 14(8), 14601–14633. https://doi.org/10.3390/s140814601spa
dc.identifier.bibliographicCitationAjiboye, A. B., Willett, F. R., Young, D. R., Memberg, W. D., Murphy, B. A., Miller, J. P., Walter, B. L., Sweet, J. A., Hoyen, H. A., Keith, M. W., Peckham, P. H., Simeral, J. D., Donoghue, J. P., Hochberg, L. R., & Kirsch, R. F. (2017). Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. The Lancet, 389(10081), 1821–1830. https://doi.org/10.1016/S0140- 6736(17)30601-3spa
dc.identifier.bibliographicCitationAl-Fahoum, A. S., & Al-Fraihat, A. A. (2014). Methods of EEG Signal Features Extraction Using Linear Analysis in Frequency and Time-Frequency Domains. ISRN Neuroscience, 2014, 1–7. https://doi.org/10.1155/2014/730218spa
dc.identifier.bibliographicCitationAl-Saegh, A., Dawwd, S. A., & Abdul-Jabbar, J. M. (2021). Deep learning for motor imagery EEGbased classification: A review. Biomedical Signal Processing and Control, 63, 1–21. https://doi.org/10.1016/j.bspc.2020.102172spa
dc.identifier.bibliographicCitationAllison, B. Z., & Neuper, C. (2010). Could Anyone Use a BCI? In D. S. Tan & A. Nijholt (Eds.), Brain-Computer Interfaces: Applying our Minds to Human-Computer Interaction (1st ed., pp. 35–54). Springer, London. https://doi.org/10.1007/978-1-84996-272-8_3spa
dc.identifier.bibliographicCitationAlyasseri, Z. A. A., Khadeer, A. T., Al-Betar, M. A., Abasi, A., Makhadmeh, S., & Ali, N. S. (2019). The Effects of EEG Feature Extraction Using Multi-Wavelet Decomposition for Mental Tasks Classification. Proceedings of the International Conference on Information and Communication Technology - ICICT ’19, 139–146. https://doi.org/10.1145/3321289.3321327spa
dc.identifier.instnameinstname:Universidad Antonio Nariñospa
dc.identifier.reponamereponame:Repositorio Institucional UANspa
dc.identifier.repourlrepourl:https://repositorio.uan.edu.co/spa
dc.identifier.urihttp://repositorio.uan.edu.co/handle/123456789/8023
dc.language.isospaspa
dc.publisherUniversidad Antonio Nariñospa
dc.publisher.campusBogotá - Circunvalarspa
dc.publisher.facultyDoctorado en Ciencia Aplicadaspa
dc.publisher.programDoctorado en Ciencia Aplicadaspa
dc.rightsAcceso abierto
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subjectinterfaz cerebro-computadora (ICC)es_ES
dc.subjectcomputadora (ICC), electroencefalografía (EEG),es_ES
dc.subjectimaginación motora (IM), sentarse-pararse, procesamiento digital de señales, reconocimiento de patroneses_ES
dc.subject.ddc600es_ES
dc.subject.keywordbrain-computer interface (BCI), electroencephalography (EEGes_ES
dc.subject.keywordmotor imagery (MI), sit-stand, digital signal processing, pattern recognitiones_ES
dc.titleSistema y método para la interpretación de la imaginación motora de los movimientos de ponerse de pie y sentarse basado en interfaz cerebro computadoraes_ES
dc.typeTesis y disertaciones (Maestría y/o Doctorado)spa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.localTesis/Trabajo de grado - Monografía - Doctoradospa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceEspecializadaspa
Files
Original bundle
Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
2022_NayidTrianaGuzman.pdf
Size:
3.19 MB
Format:
Adobe Portable Document Format
Description:
Tesis Doctorado Nayid Triana
thumbnail.default.alt
Name:
2022_NayidTrianaGuzma_Autorizacion.pdf
Size:
525.75 KB
Format:
Adobe Portable Document Format
Description:
Formato autorización publicación tesis
thumbnail.default.alt
Name:
2022_NayidTrianaGuzma_Acta.pdf
Size:
536.26 KB
Format:
Adobe Portable Document Format
Description:
Acta de sustentación tesis