Inducción de la expresión del gen de resistencia de yuca RXam2 mediante un promotor inducible por tres efectores tipo tal de xanthomonas phaseoli pv. manihotis

dc.contributor.advisorDíaz Tatis, Paula Alejandraspa
dc.contributor.advisorSanchez Ferro, Juan Sebastianspa
dc.contributor.authorSantamaría Rodríguez, Brian Davidspa
dc.date.accessioned2021-02-22T14:28:01Z
dc.date.available2021-02-22T14:28:01Z
dc.date.issued2020-06-03spa
dc.description.abstractXanthomonas phaseoli pv. manihotis (Xpm) is the causal agent of cassava bacterial blight, a disease that can generate considerable losses in this crop. This bacterium possesses effector proteins that are injected into the host cell through the type-three secretion system and that function as virulence factors. Some of these effectors, called TALEs (Transcription-Activator Like Effectors), enter the nucleus of host cells, bind specifically to host DNA sequences, called effector-binding elements (EBEs), and act as transcription factors to modulate host gene expression. The knowledge of the mode of action for TALEs in species as rice has allowed the development of biotechnological strategies to generate broad-spectrum resistance to pathogens. In this study, a trap promoter was developed that is activated by three predominant TALEs in Xpm strains that allow the expression of the resistance gene RXam2(MHV). Our results show that when TALEs 14, 20 and 22 are co-infiltrated with the synthetic promoter that contains the EBEs for this TALEs a hypersensitive response is produced in the infiltrated area in leaves of N. tabacum. These results represent an important achivement for the use of this strategy in future cassava breeding programs.eng
dc.description.abstractXanthomonas phaseoli pv. manihotis (Xpm) es el agente causal de la bacteriosis vascular de la yuca, enfermedad que puede generar pérdidas considerables en este cultivo. Esta bacteria posee proteínas efectoras que son inyectadas al interior de la célula hospedera a través del sistema de secreción tipo tres y que funcionan como factores de virulencia. Los efectores llamados TALEs (del inglés, Transcription-Activator Like Effector), ingresan al núcleo de las células hospederas, se unen de manera específica a las secuencias de ADN del hospedero, denominadas elementos de unión al efector (EBE) y actúan como factores de transcripción para modular la expresión de genes del hospedero. El conocimiento del modo de acción de los TALEs ha permitido desarrollar estrategias biotecnológicas para generar resistencia de amplio espectro a patógenos de plantas. En este estudio se elaboró un promotor trampa activado por tres TALEs predominantes en cepas de Xpm para inducir la expresión del gen de resistencia RXam2(MHV). Los resultados de los experimentos de expresión transitoria muestran que la co-infiltración de los TALEs 14, 20 y 22 junto con el promotor trampa que contiene los EBEs para estos tres efectores causan una respuesta hipersensible en el área infiltrada en hojas de N.tabacum.spa
dc.description.degreelevelPregradospa
dc.description.degreenameBioquímico(a)spa
dc.description.notesPresencialspa
dc.identifier.bibliographicCitationAguilera, M. (2012). a Agroindustrial. Centro de Estudios Económicos Regionales (CEER) - Cartagena, 158. Retrieved from http://www.banrep.gov.co/docum/Lectura_finanzas/pdf/dtser_158.pdfspa
dc.identifier.bibliographicCitationBoch, J., Bonas, U., & Lahaye, T. (2014). TAL effectors - pathogen strategies and plant resistance engineering. New Phytologist, 204(4), 823–832. https://doi.org/10.1111/nph.13015spa
dc.identifier.bibliographicCitationCohn, M., Bart, R. S., Shybut, M., Dahlbeck, D., Gomez, M., Morbitzer, R., … Staskawicz, B. J. (2014). Xanthomonas axonopodis virulence is promoted by a transcription activator-like effector - Mediated induction of a SWEET sugar transporter in Cassava. Molecular Plant-Microbe Interactions, 27(11), 1–13. https://doi.org/10.1094/MPMI-06-14-0161-Rspa
dc.identifier.bibliographicCitationDíaz, P. (2016). Transference of RXam2 and Bs2 genes to confer resistance against cassava bacterial blight ( CBB ). 1–187.spa
dc.identifier.bibliographicCitationFAO. (2008). Yuca para la seguridad alimentaria y energética. Sala De Prensa, 3–4. Retrieved from http://www.fao.org/newsroom/es/news/2008/1000899/index.htmlspa
dc.identifier.bibliographicCitationFAO. (2013). Noticias: La yuca tiene gran potencial como cultivo del siglo XXI. 28/05/2013, 3–5. Retrieved from http://www.fao.org/news/story/es/item/176821/icode/spa
dc.identifier.bibliographicCitationFAO. (2017). FAOSTAT Database. Crops. Retrieved August 26, 2019, from http://www.fao.org/faostat/en/#data/QCspa
dc.identifier.bibliographicCitationGrau, J., Wolf, A., Reschke, M., Bonas, U., Posch, S., & Boch, J. (2013). Computational Predictions Provide Insights into the Biology of TAL Effector Target Sites. PLoS Computational Biology, 9(3), 1–20. https://doi.org/10.1371/journal.pcbi.1002962spa
dc.identifier.bibliographicCitationHummel, A. W., Doyle, E. L., & Bogdanove, A. J. (2012). Addition of transcription activator-like effector binding sites to a pathogen strain-specific rice bacterial blight resistance gene makes it effective against additional strains and against bacterial leaf streak. New Phytologist, 195(4), 883–893. https://doi.org/10.1111/j.1469-8137.2012.04216.xspa
dc.identifier.bibliographicCitationJacques, M.-A., Arlat, M., Boulanger, A., Boureau, T., Carrère, S., Cesbron, S., … Vernière, C. (2016). Using Ecology, Physiology, and Genomics to Understand Host Specificity in Xanthomonas. Annual Review of Phytopathology, 54(1), 163–29. https://doi.org/10.1146/annurev-phyto-080615-100147spa
dc.identifier.bibliographicCitationJuan Sebastian Sánchez Ferro. (2020). CONSTRUCCIÓN DE PROMOTORES TRAMPA BASADOS EN EFECTORES TAL DE Xanthomonas axonopodis pv. manihotis. 1–135.spa
dc.identifier.bibliographicCitationLópez, C. E., & Bernal, A. J. (2012). Cassava Bacterial Blight: Using Genomics for the Elucidation and Management of an Old Problem. Tropical Plant Biology, 5(1), 1–10. https://doi.org/10.1007/s12042-011-9092-3spa
dc.identifier.bibliographicCitationLopez, C., Restrepo, S., & Verdier, V. (2006). Limitaciones de la bacteriosis vascular de yuca: Nuevos avances. Acta Biol. Colomb, 1–25.spa
dc.identifier.bibliographicCitationLozano, J. C. (2008). Cassava Bacterial Blight: A Manageable Disease. Plant Disease, Vol. 70, p. 1089. https://doi.org/10.1094/pd-70-1089spa
dc.identifier.bibliographicCitationMcCallum, E. J., Anjanappa, R. B., & Gruissem, W. (2017). Tackling agriculturally relevant diseases in the staple crop cassava (Manihot esculenta). Current Opinion in Plant Biology, 38, 1–9. https://doi.org/10.1016/j.pbi.2017.04.008spa
dc.identifier.bibliographicCitationMücke, S., Reschke, M., Erkes, A., Schwietzer, C. A., Becker, S., Streubel, J., … Boch, J. (2019). Transcriptional reprogramming of rice cells by Xanthomonas oryzae tales. Frontiers in Plant Science, 10(February), 1–19. https://doi.org/10.3389/fpls.2019.00162spa
dc.identifier.bibliographicCitationNoman, A., Aqeel, M., & Lou, Y. (2019). PRRs and NB-LRRs: From signal perception to activation of plant innate immunity. International Journal of Molecular Sciences, 20(8). https://doi.org/10.3390/ijms20081882spa
dc.identifier.bibliographicCitationPfeilmeier, S., Caly, D. L., & Malone, J. G. (2016). Bacterial pathogenesis of plants: future challenges from a microbial perspective: Challenges in Bacterial Molecular Plant Pathology. Molecular Plant Pathology, 17(8), 1–16. https://doi.org/10.1111/mpp.12427spa
dc.identifier.bibliographicCitationSilva, M. S., Arraes, F. B. M., Campos, M. de A., Grossi-de-Sa, M., Fernandez, D., Cândido, E. de S., … Grossi-de-Sa, M. F. (2018). Review: Potential biotechnological assets related to plant immunity modulation applicable in engineering disease-resistant crops. Plant Science, 270(October 2017), 1–13. https://doi.org/10.1016/j.plantsci.2018.02.013spa
dc.identifier.bibliographicCitationSilva, M. S., Arraes, F. B. M., Campos, M. de A., Grossi-de-Sa, M., Fernandez, D., Cândido, E. de S., … Grossi-de-Sa, M. F. (2018). Review: Potential biotechnological assets related to plant immunity modulation applicable in engineering disease-resistant crops. Plant Science, 270(October 2017), 1–13. https://doi.org/10.1016/j.plantsci.2018.02.013spa
dc.identifier.bibliographicCitationTrujillo, C. A., Arias-Rojas, N., Poulin, L., Medina, C. A., Tapiero, A., Restrepo, S., … Bernal, A. J. (2014). Population typing of the causal agent of cassava bacterial blight in the Eastern Plains of Colombia using two types of molecular markers. BMC Microbiology, 14(1). https://doi.org/10.1186/1471-2180-14-161spa
dc.identifier.bibliographicCitationVerdier, V. (2002). Bacteriosis Vascular ( o Añublo Bacteriano ) de la Yuca Causada por Xanthomonas axonopodis pv . manihotis. La Yuca En El Tercer Milenio: Sistemas Modernos de Producción, Procesamiento, Utilización y Comercialización., pp. 148–159.spa
dc.identifier.bibliographicCitationWan, W. L., Zhang, L., Pruitt, R., Zaidem, M., Brugman, R., Ma, X., … Nürnberger, T. (2019). Comparing Arabidopsis receptor kinase and receptor protein-mediated immune signaling reveals BIK1-dependent differences. New Phytologist, 221(4), 2080–2095. https://doi.org/10.1111/nph.15497spa
dc.identifier.bibliographicCitationWang, J., Wang, J., Hu, M., Wu, S., Qi, J., Wang, G., … Chai, J. (2019). Ligand-triggered allosteric ADP release primes a plant NLR complex. Science, 364(6435), 1–12. https://doi.org/10.1126/science.aav5868spa
dc.identifier.bibliographicCitationWhite, F. F., & Yang, B. (2009). Host and Pathogen Factors Controlling the Rice-Xanthomonas oryzae Interaction. PLANT PHYSIOLOGY, 150(4), 1677–1686. https://doi.org/10.1104/pp.109.139360spa
dc.identifier.bibliographicCitationYu, X., Feng, B., He, P., & Shan, L. (2017). From Chaos to Harmony: Responses and Signaling upon Microbial Pattern Recognition. Annual Review of Phytopathology, 55(1), 109–137. https://doi.org/10.1146/annurev-phyto-080516-035649spa
dc.identifier.bibliographicCitationZárate, C. A. (2015). Diversity of TALE content in Xanthomonas axonopodis pv. manihotis strains is a valuable tool to improve target gene searching methodologies. Universidad de los Andes.spa
dc.identifier.bibliographicCitationZeng, X., Tian, D., Gu, K., Zhou, Z., Yang, X., Luo, Y., … Yin, Z. (2015). Genetic engineering of the Xa10 promoter for broad-spectrum and durable resistance to Xanthomonas oryzae pv. oryzae. Plant Biotechnology Journal, 13(7), 1–9. https://doi.org/10.1111/pbi.12342spa
dc.identifier.bibliographicCitationZhang, J., Yin, Z., & White, F. (2015). TAL effectors and the executor R genes. Frontiers in Plant Science, 6(AUG), 1–9. https://doi.org/10.3389/fpls.2015.00641spa
dc.identifier.bibliographicCitationZhang, M., Chiang, Y. H., Toruño, T. Y., Lee, D. H., Ma, M., Liang, X., … Coaker, G. (2018). The MAP4 Kinase SIK1 Ensures Robust Extracellular ROS Burst and Antibacterial Immunity in Plants. Cell Host and Microbe, 24(3), 379-391.e5. https://doi.org/10.1016/j.chom.2018.08.007spa
dc.identifier.bibliographicCitationZhang, X., Dodds, P. N., & Bernoux, M. (2017). What Do We Know About NOD-Like Receptors in Plant Immunity? Annual Review of Phytopathology, 55(1), 205–229. https://doi.org/10.1146/annurev-phyto-080516-035250spa
dc.identifier.instnameinstname:Universidad Antonio Nariñospa
dc.identifier.reponamereponame:Repositorio Institucional UANspa
dc.identifier.repourlrepourl:https://repositorio.uan.edu.co/spa
dc.identifier.urihttp://repositorio.uan.edu.co/handle/123456789/1600
dc.language.isospaspa
dc.publisherUniversidad Antonio Nariñospa
dc.publisher.campusBogotá - Circunvalarspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.programBioquímicaspa
dc.rightsAcceso abierto
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subjectbacteriosis vascular de la yuca, promotor trampa, respuesta hipersensible.es_ES
dc.subject.keywordcassava bacterial blight, trap promoter, hypersensitive response.es_ES
dc.titleInducción de la expresión del gen de resistencia de yuca RXam2 mediante un promotor inducible por tres efectores tipo tal de xanthomonas phaseoli pv. manihotises_ES
dc.typeTrabajo de grado (Pregrado y/o Especialización)spa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
Files
Original bundle
Now showing 1 - 2 of 2
thumbnail.default.alt
Name:
2020AutorizacióndeAutores.pdf
Size:
54.81 KB
Format:
Adobe Portable Document Format
Description:
Autorización autores Brian Santamaría
thumbnail.default.alt
Name:
2020BrianDavidSantamariaRodríguez.pdf
Size:
640.72 KB
Format:
Adobe Portable Document Format
Description:
Trabajo de grado Brian Santamaría
License bundle
Now showing 1 - 1 of 1
thumbnail.default.alt
Name:
license.txt
Size:
2.65 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections