Uso de Geomallas Multiaxiales Como Refuerzo en Vías sin Pavimentar con Suelos Blandos o Subrasantes Débiles

dc.contributor.advisorRodriguez Rincón, Juan Pablospa
dc.contributor.authorDíaz Cepeda, Eduardo Andrésspa
dc.date.accessioned2021-03-01T21:29:12Z
dc.date.available2021-03-01T21:29:12Z
dc.date.issued2020-06-05spa
dc.descriptionPropiaes_ES
dc.description.abstractThe roads nowadays are a fundamental part of the social and economic development of any country whatsoever, since they facilitate the exchange of goods, goods and services, generating a significant growth for the nation and allowing more national and / or foreign investments, being able to increase of the economy of a people. For this reason it is so important that the tracks remain constantly in excellent structural condition. In Colombia, we have a very high percentage of primary roads in bad condition because many of them are not designed to withstand heavy vehicle loads and thus generate their constant deterioration in the short term, we remember that the roads must be designed for long periods of useful life avoiding an investment unnecessary in short periods. With respect to the above, geogrids play a major role as structural reinforcement in all types of roads; this modern element used worldwide makes the structure prolong its useful life, significantly reducing the action of vehicular loads (ditches or furrows) in Rolling, thus achieving more durable, safe and efficient routes. Due to the constant and accelerated growth of vehicular traffic, it is necessary to explore the different methods used to reinforce the roads with this type of structural element and its evolution. In this document he emphasizes the methodology used by engineers J. P. Giroud and Jie Han. The method is applied to determine the soil-geosynthetic interaction by the action of rolling loads on paved and unpaved roads. Increasing its bearing capacity, decreasing layers of stone materials, time, costs and most importantly being environmentally friendlyeng
dc.description.abstractLas vías en la actualidad hacen parte fundamental del desarrollo social y económico de un país cualquiera que sea, pues facilitan el intercambio de mercancías, bienes y servicios generando un crecimiento significativo para la nación y permitiendo más inversiones nacionales y/o extranjeras, logrando incrementar de forma significativa la economía de un pueblo. Por esta razón es tan importante que las vías permanezcan constantemente en excelentes condiciones estructurales. En Colombia tenemos un porcentaje muy alto de vías terciarias en mal estado pues muchas de ellas no están diseñadas para soportar grandes cargas vehiculares generando así su deterioro constante a corto plazo, recordemos que las vías deben ser diseñadas para grandes periodos de vida útil evitando una inversión innecesaria en periodos cortos. Con respecto a lo anterior las geomallas juegan un papel principal como refuerzo estructural en todo tipo de vías, este elemento moderno utilizado a nivel mundial logra que la estructura prolongue su vida útil, reduciendo significativamente la acción de las cargas vehiculares (zanjas o surcos) en la rodadura, logrando así vías más perdurables, seguras y eficientes. Debido al crecimiento constante y acelerado del tráfico vehicular se hace necesario explorar los diferentes métodos utilizados para el refuerzo en las vías terciarias con este tipo de elemento estructural y su evolución. En este documento hace énfasis a la metodología utilizada por los ingenieros J. P. Giroud y Jie Han. El método se aplica para determinar la interacción suelogeosintético por acción de las cargas por rodadura en caminos pavimentados y sin pavimentar. Aumentando su capacidad portante, disminuyendo capas de materiales pétreos, tiempo, costos y lo más importante siendo amigable con el medio ambientespa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero(a) Civilspa
dc.description.notesPresencialspa
dc.identifier.bibliographicCitationAbu-Farsakh, M., Hanandeh, S., Tang, X., & Chen, Q. (2016). Sustainability Evaluation of Geosynthetic Stabilized Soft Subgrade Soil in Unpaved Test Sections. In Geo-Chicago 2016 (pp. 687–696). Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/9780784480137.065.spa
dc.identifier.bibliographicCitationAbu-Farsakh, M., Souci, G., Voyiadjis, G. Z., & Chen, Q. (2012). Evaluation of Factors Affecting the Performance of Geogrid-Reinforced Granular Base Material Using Repeated Load Triaxial Tests. Journal of Materials in Civil Engineering, 24(1), 72–83. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000349.spa
dc.identifier.bibliographicCitationAhirwar, S. K., & Mandal, J. N. (2018). Behaviour of bamboo grid-reinforced soil bed. International Journal of Geotechnical Engineering, 1–10. https://doi.org/10.1080/19386362.2018.1550909.spa
dc.identifier.bibliographicCitationAhmed, S. I., & Siddiqua, S. (2016). Compressibility Behavior of Soils: A Statistical Approach. Geotechnical and Geological Engineering, 34(6), 2063–2070. https://doi.org/10.1007/s10706-016-9996-7.spa
dc.identifier.bibliographicCitationAlmendarez, L., & Reyes, J. (2017). Diseño de Pavimentos Flexibles con Refuerzo de Geomalla Triaxial Utilizando la Metodología Giroud-Han : Caso de Aplicación en Honduras. Laccei, (July), 10.spa
dc.identifier.bibliographicCitationAlzaidy, M. N. J. (2019). Experimental study for stabilizing clayey soil with eggshell powder and plastic wastes. IOP Conference Series: Materials Science and Engineering, 518(2), 22008. https://doi.org/10.1088/1757-899X/518/2/022008.spa
dc.identifier.bibliographicCitationBanco Interamericano de Desarrollo - BID. (2010). Valoración de daños y pérdidas. Bogota.spa
dc.identifier.bibliographicCitationBarber, V. C., & Odom, E. C. (1978). Deterioration and Reliability of Pavements. U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi 39180, 2(ADA056407), 15.spa
dc.identifier.bibliographicCitationBarry, A. J., Trigunarsyah, B., Symes, T., & Younger, J. S. (1995). Geogrid reinforced piled road over peat. Geological Society, London, Engineering Geology Special Publications, 10(1), 205–210. https://doi.org/10.1144/GSL.ENG.1995.010.01.16.spa
dc.identifier.bibliographicCitationBasu, G., Roy, A. N., Bhattacharyya, S. K., & Ghosh, S. K. (2009). Construction of unpaved rural road using jute–synthetic blended woven geotextile – A case study. Geotextiles and Geomembranes, 27(6), 506–512. https://doi.org/10.1016/j.geotexmem.2009.03.004.spa
dc.identifier.bibliographicCitationBauer, G. E., & El Halim, A. O. A. (1987). The performance of geogrid reinforced road bases. Construction and Building Materials, 1(2), 71–75. https://doi.org/10.1016/0950-0618(87)90002-X.spa
dc.identifier.bibliographicCitationLyons, C. K., & Fannin, J. (2006a). A comparison of two design methods for unpaved roads reinforced with geogrids. Canadian Geotechnical Journal, 43(12), 1389–1394. https://doi.org/10.1139/t06-075.spa
dc.identifier.bibliographicCitationLyons, C. K., & Fannin, J. (2006b). A comparison of two design methods for unpaved roads reinforced with geogrids. Canadian Geotechnical Journal, 43(12), 1389–1394. https://doi.org/10.1139/t06-075.spa
dc.identifier.bibliographicCitationMaaitah, O. N. (2012). Soil Stabilization by Chemical Agent. Geotechnical and Geological Engineering, 30(6), 1345–1356. https://doi.org/10.1007/s10706-012-9549-7.spa
dc.identifier.bibliographicCitationMarto, A., Latifi, N., & Sohaei, H. (n.d.). Stabilization of Laterite Soil using GKS Soil Stabilizer.spa
dc.identifier.bibliographicCitationMaubeuge, K. v., & Klompmaker, J. (2011). New Developments for Geogrid Reinforced Base Courses. In Geo-Frontiers 2011 (pp. 4624–4634). Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/41165(397)473.spa
dc.identifier.bibliographicCitationMexichem Soluciones Integrales. (2012). Manual de Diseño con Geosintéticos. (Geosotf Pavco, Ed.) (9th ed.). Bogotá.spa
dc.identifier.bibliographicCitationMillien, A., Dragomir, M. L., Wendling, L., Petit, C., & Iliescu, M. (2012). Geogrid Interlayer Performance in Pavements: Tensile-Bending Test for Crack Propagation. In 7th RILEM International Conference on Cracking in Pavements (pp. 1209–1218). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-4566-7_115.spa
dc.identifier.bibliographicCitationMilligan, G. W. E., Jewell, R. A., Houlsby, G. ., & Burd, H. J. (1989). New approach to the design of unpaved roads - part I. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 26(6), 25–29. https://doi.org/10.1016/0148-9062(89)91753-1.spa
dc.identifier.bibliographicCitationMilligan, G. W. E., & Love, J. P. (1984). Model Testing of Geogrids Under an Aggregate Layer on Soft Ground. In N. L. Science & Engineering Research Council, Swindon, Engl (Ed.) (pp. 128–138). England: Engl, Thomas Telford, Londres, Engl.spa
dc.identifier.bibliographicCitationMishra, S., Sachdeva, S. N., & Manocha, R. (2019). Subgrade Soil Stabilization Using Stone Dust and Coarse Aggregate: A Cost Effective Approach. International Journal of Geosynthetics and Ground Engineering, 5(3), 20. https://doi.org/10.1007/s40891-019-0171-0.spa
dc.identifier.bibliographicCitationPalmeira, E. M., & Antunes, L. G. S. (2010). Large scale tests on geosynthetic reinforced unpaved roads subjected to surface maintenance. Geotextiles and Geomembranes, 28(6), 547–558. https://doi.org/10.1016/j.geotexmem.2010.03.002.spa
dc.identifier.bibliographicCitationMontejo Fonseca, A. (2002). www.litecsa.com.ec 2587713. (A. Montejo Fonseca, Ed.) (II Edición). Bogotá: Universidad Catolica de Colombia.spa
dc.identifier.bibliographicCitationMousavi, S. H., Gabr, M. A., & Borden, R. H. (2017). Optimum location of geogrid reinforcement in unpaved road. Canadian Geotechnical Journal, 54(7), 1047–1054. https://doi.org/10.1139/cgj-2016-0562.spa
dc.identifier.bibliographicCitationNader Ghafoori, Ph.D., P. ., & Sharbaf, M. (2016). Use of GEOGRID for Strengthening and Reducing the Roadway Structural Sections. Las Vegas.spa
dc.identifier.bibliographicCitationOrrego Cabanillas, D. A. (2014). Análisis técnico-económico del uso de geomallas como refuerzo de bases granulares en pavimentos flexibles. Pontificia Universidad Católica del Perú.spa
dc.identifier.bibliographicCitationOtero Téllez, D. F., & Montejo Ochoa, F. (2016). Evaluación del comportamiento mecánico de una estructura bicapa, reforzada con geomalla biaxial, compuesta por afirmado invías sobre subrasante blanda, aplicable a vías no pavimentadas. Pontificia Universidad Javeriana.spa
dc.identifier.bibliographicCitationPacheco-Torres, R., & Varela, F. (2019). Mechanical performance of cement-stabilised soil containing recycled glass as road base layer. Road Materials and Pavement Design, 1–17. https://doi.org/10.1080/14680629.2019.1602073.spa
dc.identifier.bibliographicCitationPalmeira, E. M., & Antunes, L. G. S. (2010). Geosynthetic reinforced unpaved road performance after surface maintenance. 9th International Conference on Geosynthetics - Geosynthetics: Advanced Solutions for a Challenging World, ICG 2010, (May 2010), 1457–1460.spa
dc.identifier.bibliographicCitationPalmeira, E., & Tatsuoka, F. (2008). Advances in geosynthetics materials and applications for soil reinforcement and environmental protection works. Electron J Geotech.spa
dc.identifier.bibliographicCitationPerkins, S. W. (1999). Geosynthetic Reinforcement of Flexible Pavements: Laboratory Based Pavement Test Sections. Bozeman. https://doi.org/FHWA/MT-99-001/8138.spa
dc.identifier.bibliographicCitationPerkins, S. W., & Ismeik, M. (1997). A Synthesis and Evaluation of Geosynthetic-Reinforced Base Layers in Flexible Pavements- Part II. Geosynthetics International, 4(6), 605–621. https://doi.org/10.1680/gein.4.0107.spa
dc.identifier.bibliographicCitationQian, Y., Han, J., Pokharel, S. K., & Parsons, R. L. (2011). Stress Analysis on Triangular-Aperture Geogrid-Reinforced Bases over Weak Subgrade under Cyclic Loading. Transportation Research Record: Journal of the Transportation Research Board, 2204(1), 83–91. https://doi.org/10.3141/2204-11.spa
dc.identifier.bibliographicCitationRahman, M. A., Arulrajah, A., Piratheepan, J., Bo, M. W., & Imteaz, M. A. (2014). Effect of Geogrids on Interface Shear Strength Properties of Recycled Crushed Brick. In Geo-Congress 2014 Technical Papers (pp. 3615–3624). Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/9780784413272.350.spa
dc.identifier.bibliographicCitationRaymond, G., & Ismail, I. (2003). The effect of geogrid reinforcement on unbound aggregates. Geotextiles and Geomembranes, 21(6), 355–380. https://doi.org/10.1016/S0266-1144(03)00044-X.spa
dc.identifier.bibliographicCitationRimoldi, P., & Korulla, M. (2019). Design Model for Strength and Location of Geogrids for Road Stabilization (pp. 153–165). Pendergrass, Georgia: TenCate Geosynthetics Americas. https://doi.org/10.1007/978-981-13-6701-4_9.spa
dc.identifier.bibliographicCitationSadık Bakır, B., & Tolga Yılmaz, M. (2006). Discussion of “Subsurface Characterization at Ground Failure Sites in Adapazari, Turkey” by Jonathan D. Bray, Rodolfo B. Sancio, Turan Durgunoglu, Akin Onalp, T. Leslie Youd, Jonathan P. Stewart, Raymond B. Seed, Onder K. Cetin, Ertan Bol, M. B. Baturay, . Journal of Geotechnical and Geoenvironmental Engineering, 132(4), 537–539. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:4(537).spa
dc.identifier.bibliographicCitationSalcedo Rodriguez, C. (2019). Del total de la red vial terciaria con la que cuenta Colombia, 96% está en mal estado. Retrieved August 17, 2019, from https://www.larepublica.co/infraestructura/del-total-de-la-red-vial-terciaria-con-la-que-cuenta-colombia-96-esta-en-mal-estado-2828335.spa
dc.identifier.bibliographicCitationSprague, C. J., Lothspeich, S., Chuck, F., & Goodrum, R. (2004). Geogrid Reinforcement of Road Base Aggregate — Measuring the Confinement Benefit. In Geotechnical Engineering for Transportation Projects (pp. 996–1005). Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/40744(154)87.spa
dc.identifier.bibliographicCitationSánchez, M., Wang, D., Briaud, J.-L., & Douglas, C. (2014). Typical geomechanical problems associated with railroads on shrink-swell soils. Transportation Geotechnics, 1(4), 257–274. https://doi.org/10.1016/j.trgeo.2014.07.002.spa
dc.identifier.bibliographicCitationSaride, S., Chikyala, S. R., Puppala, A. J., & Harris, P. J. (2010). Effects of Organics on Stabilized Expansive Subgrade Soils. In Ground Improvement and Geosynthetics (pp. 155–164). Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/41108(381)21.spa
dc.identifier.bibliographicCitationSharma, R., Chen, Q., Abu-Farsakh, M., & Yoon, S. (2009). Analytical modeling of geogrid reinforced soil foundation. Geotextiles and Geomembranes, 27(1), 63–72. https://doi.org/10.1016/j.geotexmem.2008.07.002.spa
dc.identifier.bibliographicCitationSieira, A. C. C. F., Gerscovich, D. M. S., & Sayão, A. S. F. J. (2009). Displacement and load transfer mechanisms of geogrids under pullout condition. Geotextiles and Geomembranes, 27(4), 241–253. https://doi.org/10.1016/j.geotexmem.2008.11.012.spa
dc.identifier.bibliographicCitationSigurdsson, O. (1993). Geosynthetics Stabilization of Unpaved Roads on Soft Ground: a Field Evaluation. B.Sc., The Technical College of Iceland, 1991. The University of British Columbia.spa
dc.identifier.bibliographicCitationSingh, M., Trivedi, A., & Shukla, S. K. (2019). Strength enhancement of the subgrade soil of unpaved road with geosynthetic reinforcement layers. Transportation Geotechnics, 19, 54–60. https://doi.org/10.1016/j.trgeo.2019.01.007.spa
dc.identifier.bibliographicCitationSom, N., & Sahu, R. B. (1999). Bearing Capacity of a Geotextile-Reinforced Unpaved Road as a Function of Deformation: A Model Study. Geosynthetics International, 6(1), 1–17. https://doi.org/10.1680/gein.6.0140.spa
dc.identifier.bibliographicCitationSun, X., Han, J., Kwon, J., Parsons, R. L., & Wayne, M. H. (2015). Radial stresses and resilient deformations of geogrid-stabilized unpaved roads under cyclic plate loading tests. Geotextiles and Geomembranes, 43(5), 440–449. https://doi.org/10.1016/j.geotexmem.2015.04.018.spa
dc.identifier.bibliographicCitationSun, X., Han, J., Wayne, M. H., Parsons, R. L., & Kwon, J. (2014). Experimental Study on Resilient Behavior of Triaxial Geogrid-Stabilized Unpaved Roads. In Ground Improvement and Geosynthetics (pp. 353–362). Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/9780784413401.035.spa
dc.identifier.bibliographicCitationTabatabaei, S. A., & Rahman, A. (2013). The Effect of Utilization of Geogrids on Reducing the Required Thickness of Unpaved Roads. Advanced Materials Research, 712–715, 937–941. https://doi.org/10.4028/www.scientific.net/AMR.712-715.937.spa
dc.identifier.bibliographicCitationTang, X., Abu-Farsakh, M., Hanandeh, S., & Chen, Q. (2014). Evaluation of Geosynthetics in Unpaved Roads Built over Natural Soft Subgrade Using Full-Scale Accelerated Pavement Testing. In Geo-Congress 2014 Technical Papers (pp. 3035–3043). Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/9780784413272.295.spa
dc.identifier.bibliographicCitationTencate. (2014). Application of the Giroud – Han Design Method for Geosynthetic Reinforced Unpaved Roads with TenCate Mirafi ® Geosynthetics, (706).spa
dc.identifier.bibliographicCitationTensar, I. (2010). The properties and performance advantages of Tensar TriAxTM geogrids. Blackburn.spa
dc.identifier.bibliographicCitationTingle, J. S., & Webster, S. L. (2003). Corps of Engineers Design of Geosynthetic-Reinforced Unpawed Roads. Transportation Research Record: Journal of the Transportation Research Board, 1849(1), 193–201. https://doi.org/10.3141/1849-21.spa
dc.identifier.bibliographicCitationVennamaneni, S., Raju Aketi, N., & Paisa, S. (2018). Reduction in Pavement Thickness by Using Geogrid. International Journal of Engineering & Technology, 7(3.3), 17. https://doi.org/10.14419/ijet.v7i3.3.14473.spa
dc.identifier.bibliographicCitationVoskamp, W. (2000). Index and Performance Testing a New Geogrid Made of Highly Oriented Straps. In Advances in Transportation and Geoenvironmental Systems Using Geosynthetics (pp. 360–372). Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/40515(291)24.spa
dc.identifier.bibliographicCitationBell JR, Hicks RG, et. al. (1980). Evaluation of Test Methods and Use Criteria for Geotechnical Fabrics in Highway Applications, Interim Report FHWA/RD-80/021. Federal Highway Administration, US Department of Transportation, 190. https://doi.org/PB81-156150.spa
dc.identifier.bibliographicCitationWebster, S. L. (1993). Geogrid reinforced base courses for flexible pavements for light aircraft: test section construction, behavior under treffic, laboratory tests, and design criteria. Vicksburg, Mississipp.spa
dc.identifier.bibliographicCitationYoder, E., & M. W. Witczak. (1975). Principles of Pavement Design, Second Edition. (E. J. (University of M. Yoder, Ed.) (Second). Canada.spa
dc.identifier.bibliographicCitationYoung, S., Ismail, G., & Chong, A. (2019). Towards innovative design and construction standards for lime stabilised subgrades. IOP Conference Series: Materials Science and Engineering, 512, 12028. https://doi.org/10.1088/1757-899X/512/1/012028.spa
dc.identifier.bibliographicCitationYu, X., & Pradhan, A. (2017). Effect of Particle Shape on Geogrid-Reinforced Granules (pp. 109–116). https://doi.org/10.1007/978-981-10-1926-5_13.spa
dc.identifier.bibliographicCitationZhang, J., & Hurta, G. (2008a). Comparison of Geotextile and Geogrid Reinforcement on Unpaved Road, 530–537. https://doi.org/10.1061/40971(310)66.spa
dc.identifier.bibliographicCitationZhang, J., & Hurta, G. (2008b). Comparison of Geotextile and Geogrid Reinforcement on Unpaved Road. In GeoCongress 2008 (pp. 530–537). Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/40971(310)66.spa
dc.identifier.bibliographicCitationZornberg, J. (2011). Advances in the use of geosynthetics in pavement desing. Ce.Utexas.Edu, 1(September), 23–24. https://doi.org/10.1378/chest.128.2.609.spa
dc.identifier.bibliographicCitationBhandari, A., Han, J., & Parsons, R. L. (2015). Two-dimensional DEM analysis of behavior of geogrid-reinforced uniform granular bases under a vertical cyclic load. Acta Geotechnica, 10(4), 469–480. https://doi.org/10.1007/s11440-013-0299-3spa
dc.identifier.bibliographicCitationBurmister, D. M. (1958). Evaluation of Pavement Systems of the WASHO Road Test by Layered System Methods. Highway Research Board Bulletin, (177), 26–54.spa
dc.identifier.bibliographicCitationCarter, G. R., & Dixon, J. H. (1995). Oriented polymer grid reinforcement. Construction and Building Materials, 9(6), 389–401. https://doi.org/10.1016/0950-0618(95)00068-2.spa
dc.identifier.bibliographicCitationCecconi, M., & Russo, G. (2012). Geotechnical Properties of Lime Stabilized Pyroclastic Soils. Electronic Journal of Geotechnical Engineering, 17, 2581–2597. https://doi.org/10893032.spa
dc.identifier.bibliographicCitationChaitanya, D. V. S. ., & Neeharika, P. (2019). Soil Stabilization using Geosynthetic Material (Steel Fibres). International Journal of Innovative Technology and Exploring Engineering, 8(6 Special), 553–556. https://doi.org/10.35940/ijitee.F1114.0486S419.spa
dc.identifier.bibliographicCitationCollin, J. G., Kinney, T. C., & Fu, X. (1996). Full Scale Highway Load Test of Flexible Pavement Systems with Geogrid Reinforced Base Courses. Geosynthetics International, 3(4), 537–549. https://doi.org/10.1680/gein.3.0074.spa
dc.identifier.bibliographicCitationCruz, E. (2013). Influencia De Geomallas En Los Parámetros Mecánicos De Materiales Para Vías Terrestres. UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO.spa
dc.identifier.bibliographicCitationCuelho, E. V., & Perkins, S. W. (2017). Geosynthetic subgrade stabilization – Field testing and design method calibration. Transportation Geotechnics, 10, 22–34. https://doi.org/10.1016/j.trgeo.2016.10.002.spa
dc.identifier.bibliographicCitationDANE. Censo general 2005 (2005).spa
dc.identifier.bibliographicCitationDas, B. M. (2011). Fundamentos de ingeniería de cimentaciones. (S. R. Cervantes González & O. A. Ramírez Rosas, Eds.) (7 edición). Mexico.spa
dc.identifier.bibliographicCitationDas, B. M. (2016). Use of geogrid in the construction of railroads. Innovative Infrastructure Solutions, 1(1), 15. https://doi.org/10.1007/s41062-016-0017-8.spa
dc.identifier.bibliographicCitationDelgado Gómez, P. (2019). La reestructuración que necesita el transporte de carga. Retrieved May 2, 2020, from https://www.elespectador.com/economia/la-reestructuracion-que-necesita-el-transporte-de-carga-articulo-853987.spa
dc.identifier.bibliographicCitationDepartamento Nacional de Planeación. Mejoramiento de vías terciarias - vías de tercer orden (2018). Bogota: Subdirección Territorial y de Inversiones Públicas.spa
dc.identifier.bibliographicCitationDouglas, R. A., & Valsangkar, A. J. (1992). Unpaved geosynthetic-built resource access roads: Stiffness rather than rut depth as the key design criterion. Geotextiles and Geomembranes, 11(1), 45–59. https://doi.org/10.1016/0266-1144(92)90012-Y.spa
dc.identifier.bibliographicCitationElleboudy, A. M., Saleh, N. M., & Salama, A. G. (2017). Assessment of geogrids in gravel roads under cyclic loading. Alexandria Engineering Journal, 56(3), 319–326. https://doi.org/10.1016/j.aej.2016.09.023.spa
dc.identifier.bibliographicCitationFabbri, A., Soudani, L., McGregor, F., & Morel, J.-C. (2019). Analysis of the water absorption test to assess the intrinsic permeability of earthen materials. Construction and Building Materials, 199, 154–162. https://doi.org/10.1016/j.conbuildmat.2018.12.014.spa
dc.identifier.bibliographicCitationFaiz, A. (2012). The Promise of Rural Roads. The Promise of Rural Roads, (September). https://doi.org/10.17226/22711.spa
dc.identifier.bibliographicCitationFannin, R. J., & Sigurdsson, O. (1996). Field Observations on Stabilization of Unpaved Roads with Geosynthetics. Journal of Geotechnical Engineering, 122(7), 544–553. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:7(544).spa
dc.identifier.bibliographicCitationFernando, D., Téllez, O., & Montejo, F. (2016). Evaluación del comportamiento mecánico de una estructura bicapa , reforzada con geomalla biaxial , compuesta por afirmado INVÍAS sobre subrasante blanda , aplicable a vías no pavimentadas Evaluation of the mechanical behavior of a bilayer structure , rein. XV CONGRESO COLOMBIANO DE GEOTECNIA & II CONFERENCIA INTERNACIONAL ESPECIALIZADA EN ROCAS BLANDAS. CARTAGENA 5 AL 7 DE OCTUBRE DE 2016.spa
dc.identifier.bibliographicCitationGeiger, D. R. (2003). Economic Analysis Primer: Benefit-Cost Analysis. (Federal Highway Administration’s, Ed.) (1st ed.). U.S. Department of Transportation Federal Highway Administration Office of Asset Management.spa
dc.identifier.bibliographicCitationGeosynthetic Materials Association. (2000). Geosynthetic Reinforcement of the Aggregate Base/Subbase Courses of Pavement Structures. (AASHTO Committee 4E, Ed.) (2nd ed.). Roseville.spa
dc.identifier.bibliographicCitationGiroud, J., Ah-Line, C., & Bonaparte, R. (1984). Design of unpaved roads with TENAX geogrids. Telford (Thomas) Limited, 116–127.spa
dc.identifier.bibliographicCitationGiroud, J. P., & Han, J. (2004a). Design method for geogrid-reinforced unpaved roads. I. Development of design method. Journal of Geotechnical and Geoenvironmental Engineering, 130(8), 775–786. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:8(775).spa
dc.identifier.bibliographicCitationGiroud, J. P., & Han, J. (2004b). Design Method for Geogrid-Reinforced Unpaved Roads. II. Calibration and Applications. Journal of Geotechnical and Geoenvironmental Engineering, 130(8), 787–797. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:8(787).spa
dc.identifier.bibliographicCitationGiroud, J. P., & Han, J. (2012). The Giroud-Han design method for geosynthetic-reinforced unpaved roads. Geosynthetics, 30(1), 40–49.spa
dc.identifier.bibliographicCitationGiroud, J. P., & Noiray, L. (1981). Geotextile-reinforced unpaved road design. Journal of Geotechnical and Geoenvironmental Engineering, 107(9), 1233–1254. https://doi.org/10.1016/0148-9062(82)90853-1.spa
dc.identifier.bibliographicCitationGóngora, I. A. G., & Palmeira, E. M. (2012). Influence of fill and geogrid characteristics on the performance of unpaved roads on weak subgrades. Geosynthetics International, 19(2), 191–199. https://doi.org/10.1680/gein.2012.19.2.191.spa
dc.identifier.bibliographicCitationGonzales Bell, J. (2018). Colombia ocupa el puesto 97 en conectividad de carreteras según el Foro Económico Mundial. Retrieved August 18, 2019, from https://www.larepublica.co/especiales/especial-infraestructura/colombia-ocupa-el-puesto-97-en-conectividad-de-carreteras-segun-el-foro-economico-mundial-2795752.spa
dc.identifier.bibliographicCitationHammitt, G. M. (1970). Thickness Requirements For Unsurfaced Roads and Airfields, Bare Base Support Project 3782-65. (U. S. Army Engineer Waterways Experiment Station, Ed.) (2nd ed.). Vicksburg, Mississippi: Chief of Engineers and U. S. Air Force.spa
dc.identifier.bibliographicCitationHan, J. (2013). Design of Planar Geosynthetic-Improved Unpaved and Paved Roads. In Pavement and Geotechnical Engineering for Transportation (pp. 31–41). Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/9780784412817.003.spa
dc.identifier.bibliographicCitationHan, J., & Thakur, J. K. (2012). Use of Geosynthetics to Stabilize Recycled Aggregates in Roadway Construction. In ICSDEC 2012 (pp. 473–480). Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/9780784412688.057.spa
dc.identifier.bibliographicCitationHoltz, R. D., Christopher, B. R., & Berg, R. R. (2008). Geosynthetic Design & Construction Guidelines Reference Manual. (U.S. Department of Transportation Federal Highway Administration, Ed.) (FHWA NHI-0). Washington, D.C.: Institute, National Highway.spa
dc.identifier.bibliographicCitationHorton, M., Mazurowski, P., & Oliver, T. (2019). Incorporation of the Influence of Hexagonal Stabilisation Geogrids into Mechanistic-Empirical Pavement Design Method (pp. 165–179). https://doi.org/10.1007/978-981-13-6713-7_14.spa
dc.identifier.bibliographicCitationHu, Y. (2008). Study on Relationship Between Wheel Load and Rut Depth of Geogrid-Reinforced Unpaved Road. In Geotechnical Engineering for Disaster Mitigation and Rehabilitation (pp. 642–647). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-79846-0_80.spa
dc.identifier.bibliographicCitationHuang, B., & Wu, H. (2009). Ensayo de laboratorio de desempeño de geomallas utilizando un equipo de ensayos de ruedas con cargas. Centro de Investigación del Transporte Universidad de Tennessee. Tennessee.spa
dc.identifier.bibliographicCitationHUFENUS, R., RUEEGGER, R., BANJAC, R., MAYOR, P., SPRINGMAN, S., & BRONNIMANN, R. (2006). Full-scale field tests on geosynthetic reinforced unpaved roads on soft subgrade. Geotextiles and Geomembranes, 24(1), 21–37. https://doi.org/10.1016/j.geotexmem.2005.06.002.spa
dc.identifier.bibliographicCitationInstituto Nacional de Vías. Análisis de Precios Unitarios, Gobierno de Colombia (2019). Bogotá, Colombia: Mintransporte.spa
dc.identifier.bibliographicCitationJarrett, P. M. (1984). Evaluation of Geogrids for Construction of Roadways Over Muskeg.Jarrett, P. M. (1984). Evaluation of Geogrids for Construction of Roadways Over Muskeg. Royal Military Coll of Canada, 149–153. Royal Military Coll of Canada, 149–153.spa
dc.identifier.bibliographicCitationJeon, H.-Y. (2010). Evaluation of long-term behaviours of geogrids: a review. Proceedings of the Institution of Civil Engineers - Ground Improvement, 163(4), 189–195. https://doi.org/10.1680/grim.2010.163.4.189.spa
dc.identifier.bibliographicCitationJrade, A., & Alkass, S. (2007). Computer-Integrated System for Estimating the Costs of Building Projects. Journal of Architectural Engineering, 13(4), 205–223. https://doi.org/10.1061/(ASCE)1076-0431(2007)13:4(205).spa
dc.identifier.bibliographicCitationKawalec, J., Gołos, M., & Mazurowski, P. (2018). Environmental aspects of the implementation of geogrids for pavement optimisation. IOP Conference Series: Materials Science and Engineering, 356, 12018. https://doi.org/10.1088/1757-899X/356/1/012018.spa
dc.identifier.bibliographicCitationKeller, G. R. (2016a). Application of geosynthetics on low-volume roads. Transportation Geotechnics, 8, 119–131. https://doi.org/10.1016/j.trgeo.2016.04.002.spa
dc.identifier.bibliographicCitationKeller, G. R. (2016b). Application of geosynthetics on low-volume roads. Transportation Geotechnics, 8, 119–131. https://doi.org/10.1016/j.trgeo.2016.04.002.spa
dc.identifier.bibliographicCitationKodicherla, S. P. K., & Nandyala, D. K. (2019). Influence of randomly mixed coir fibres and fly ash on stabilization of clayey subgrade. International Journal of Geo-Engineering, 10(1), 3. https://doi.org/10.1186/s40703-019-0099-1.spa
dc.identifier.bibliographicCitationKoerner, R. M. (2012). Designing with geosynthetics (Sexta Edic). https://doi.org/10.1017/CBO9781107415324.004.spa
dc.identifier.bibliographicCitationKoslanant, S., Onitsuka, K., & Negami, T. (2006). Influence of salt additive in lime stablization on organic clay. Geotechnical Engineering, 37(2), 95–101. https://doi.org/00465828.spa
dc.identifier.bibliographicCitationLatha, G., Nair, A., & Hemalatha, M. (2010). Performance of geosynthetics in unpaved roads. International Journal of Geotechnical Engineering, 4(3), 337–349. https://doi.org/10.3328/IJGE.2010.04.03.337-349.spa
dc.identifier.bibliographicCitationLawton, E. C., Mokashi, A. A., & Fox, N. S. (1996). Field Tests and Numerical Analyses of Subgrade Soil Reinforced with Grids of Stabilized Granular Columns. Transportation Research Record: Journal of the Transportation Research Board, 1534(1), 72–79. https://doi.org/10.1177/0361198196153400111.spa
dc.identifier.bibliographicCitationLeite Gembus, F., & Thesseling, B. (2015). Polyester geogrids as asphalt reinforcement - a sustainable solution for pavement rehabilitation. Huesker Syntethic GmbH. https://doi.org/10.1201 / b18538-91.spa
dc.identifier.bibliographicCitationLeng, J., & Gabr, M. A. (2006). Deformation–Resistance Model for Geogrid-Reinforced Unpaved Road. Transportation Research Record: Journal of the Transportation Research Board, 1975(1), 146–154. https://doi.org/10.1177/0361198106197500116.spa
dc.identifier.bibliographicCitationLeu, W., State, D., Engineer, A. I. D., Tasa, L., State, D., & Engineer, A. I. D. (2001). Applications of geotextiles, geogrids, and geocells in Northern Minnesota. Conferencia de Geosintéticos 2001; Portland, Oregon, 809–821.spa
dc.identifier.bibliographicCitationLipomi, D., & Wayne, M. H. (2014). Geosynthetic Solutions for Paved and Unpaved Applications. In Shale Energy Engineering 2014 (pp. 565–575). Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/9780784413654.059.spa
dc.identifier.bibliographicCitationLiu, C.-N., Zornberg, J. G., Chen, T.-C., Ho, Y.-H., & Lin, B.-H. (2009). Behavior of Geogrid-Sand Interface in Direct Shear Mode. Journal of Geotechnical and Geoenvironmental Engineering, 135(12), 1863–1871. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000150.spa
dc.identifier.bibliographicCitationLiu, L., Wehbe, G., & Sisovic, J. (2010). The Accuracy of Hybrid Estimating Approaches: A Case Study of an Australian State Road & Traffic Authority. The Engineering Economist, 55(3), 225–245. https://doi.org/10.1080/0013791X.2010.502962.spa
dc.identifier.instnameinstname:Universidad Antonio Nariñospa
dc.identifier.reponamereponame:Repositorio Institucional UANspa
dc.identifier.repourlrepourl:https://repositorio.uan.edu.co/spa
dc.identifier.urihttp://repositorio.uan.edu.co/handle/123456789/2130
dc.language.isospaspa
dc.publisherUniversidad Antonio Nariñospa
dc.publisher.campusBogotá - Surspa
dc.publisher.facultyFacultad de Ingeniería Civilspa
dc.publisher.programIngeniería Civilspa
dc.rightsAcceso abierto
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAttribution-ShareAlike 4.0 International (CC BY-SA 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/spa
dc.subjectrefuerzoes_ES
dc.subjectgeomallaes_ES
dc.subjectmateriales pétreoses_ES
dc.subject.keywordreinforcementes_ES
dc.subject.keywordgeogridses_ES
dc.subject.keywordpetty materialses_ES
dc.titleUso de Geomallas Multiaxiales Como Refuerzo en Vías sin Pavimentar con Suelos Blandos o Subrasantes Débileses_ES
dc.typeTrabajo de grado (Pregrado y/o Especialización)spa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
Files
Original bundle
Now showing 1 - 2 of 2
thumbnail.default.alt
Name:
2020EduardoAndresDiazCepeda.pdf
Size:
3.47 MB
Format:
Adobe Portable Document Format
Description:
Trabajo de grado
thumbnail.default.alt
Name:
2020AutorizacióndeAutores.pdf
Size:
951.65 KB
Format:
Adobe Portable Document Format
Description:
Autorización de autores
License bundle
Now showing 1 - 1 of 1
thumbnail.default.alt
Name:
license.txt
Size:
2.65 KB
Format:
Item-specific license agreed upon to submission
Description: