Uso de Geomallas Multiaxiales Como Refuerzo en Vías sin Pavimentar con Suelos Blandos o Subrasantes Débiles
dc.contributor.advisor | Rodriguez Rincón, Juan Pablo | spa |
dc.contributor.author | Díaz Cepeda, Eduardo Andrés | spa |
dc.date.accessioned | 2021-03-01T21:29:12Z | |
dc.date.available | 2021-03-01T21:29:12Z | |
dc.date.issued | 2020-06-05 | spa |
dc.description | Propia | es_ES |
dc.description.abstract | The roads nowadays are a fundamental part of the social and economic development of any country whatsoever, since they facilitate the exchange of goods, goods and services, generating a significant growth for the nation and allowing more national and / or foreign investments, being able to increase of the economy of a people. For this reason it is so important that the tracks remain constantly in excellent structural condition. In Colombia, we have a very high percentage of primary roads in bad condition because many of them are not designed to withstand heavy vehicle loads and thus generate their constant deterioration in the short term, we remember that the roads must be designed for long periods of useful life avoiding an investment unnecessary in short periods. With respect to the above, geogrids play a major role as structural reinforcement in all types of roads; this modern element used worldwide makes the structure prolong its useful life, significantly reducing the action of vehicular loads (ditches or furrows) in Rolling, thus achieving more durable, safe and efficient routes. Due to the constant and accelerated growth of vehicular traffic, it is necessary to explore the different methods used to reinforce the roads with this type of structural element and its evolution. In this document he emphasizes the methodology used by engineers J. P. Giroud and Jie Han. The method is applied to determine the soil-geosynthetic interaction by the action of rolling loads on paved and unpaved roads. Increasing its bearing capacity, decreasing layers of stone materials, time, costs and most importantly being environmentally friendly | eng |
dc.description.abstract | Las vías en la actualidad hacen parte fundamental del desarrollo social y económico de un país cualquiera que sea, pues facilitan el intercambio de mercancías, bienes y servicios generando un crecimiento significativo para la nación y permitiendo más inversiones nacionales y/o extranjeras, logrando incrementar de forma significativa la economía de un pueblo. Por esta razón es tan importante que las vías permanezcan constantemente en excelentes condiciones estructurales. En Colombia tenemos un porcentaje muy alto de vías terciarias en mal estado pues muchas de ellas no están diseñadas para soportar grandes cargas vehiculares generando así su deterioro constante a corto plazo, recordemos que las vías deben ser diseñadas para grandes periodos de vida útil evitando una inversión innecesaria en periodos cortos. Con respecto a lo anterior las geomallas juegan un papel principal como refuerzo estructural en todo tipo de vías, este elemento moderno utilizado a nivel mundial logra que la estructura prolongue su vida útil, reduciendo significativamente la acción de las cargas vehiculares (zanjas o surcos) en la rodadura, logrando así vías más perdurables, seguras y eficientes. Debido al crecimiento constante y acelerado del tráfico vehicular se hace necesario explorar los diferentes métodos utilizados para el refuerzo en las vías terciarias con este tipo de elemento estructural y su evolución. En este documento hace énfasis a la metodología utilizada por los ingenieros J. P. Giroud y Jie Han. El método se aplica para determinar la interacción suelogeosintético por acción de las cargas por rodadura en caminos pavimentados y sin pavimentar. Aumentando su capacidad portante, disminuyendo capas de materiales pétreos, tiempo, costos y lo más importante siendo amigable con el medio ambiente | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Ingeniero(a) Civil | spa |
dc.description.notes | Presencial | spa |
dc.identifier.bibliographicCitation | Abu-Farsakh, M., Hanandeh, S., Tang, X., & Chen, Q. (2016). Sustainability Evaluation of Geosynthetic Stabilized Soft Subgrade Soil in Unpaved Test Sections. In Geo-Chicago 2016 (pp. 687–696). Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/9780784480137.065. | spa |
dc.identifier.bibliographicCitation | Abu-Farsakh, M., Souci, G., Voyiadjis, G. Z., & Chen, Q. (2012). Evaluation of Factors Affecting the Performance of Geogrid-Reinforced Granular Base Material Using Repeated Load Triaxial Tests. Journal of Materials in Civil Engineering, 24(1), 72–83. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000349. | spa |
dc.identifier.bibliographicCitation | Ahirwar, S. K., & Mandal, J. N. (2018). Behaviour of bamboo grid-reinforced soil bed. International Journal of Geotechnical Engineering, 1–10. https://doi.org/10.1080/19386362.2018.1550909. | spa |
dc.identifier.bibliographicCitation | Ahmed, S. I., & Siddiqua, S. (2016). Compressibility Behavior of Soils: A Statistical Approach. Geotechnical and Geological Engineering, 34(6), 2063–2070. https://doi.org/10.1007/s10706-016-9996-7. | spa |
dc.identifier.bibliographicCitation | Almendarez, L., & Reyes, J. (2017). Diseño de Pavimentos Flexibles con Refuerzo de Geomalla Triaxial Utilizando la Metodología Giroud-Han : Caso de Aplicación en Honduras. Laccei, (July), 10. | spa |
dc.identifier.bibliographicCitation | Alzaidy, M. N. J. (2019). Experimental study for stabilizing clayey soil with eggshell powder and plastic wastes. IOP Conference Series: Materials Science and Engineering, 518(2), 22008. https://doi.org/10.1088/1757-899X/518/2/022008. | spa |
dc.identifier.bibliographicCitation | Banco Interamericano de Desarrollo - BID. (2010). Valoración de daños y pérdidas. Bogota. | spa |
dc.identifier.bibliographicCitation | Barber, V. C., & Odom, E. C. (1978). Deterioration and Reliability of Pavements. U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi 39180, 2(ADA056407), 15. | spa |
dc.identifier.bibliographicCitation | Barry, A. J., Trigunarsyah, B., Symes, T., & Younger, J. S. (1995). Geogrid reinforced piled road over peat. Geological Society, London, Engineering Geology Special Publications, 10(1), 205–210. https://doi.org/10.1144/GSL.ENG.1995.010.01.16. | spa |
dc.identifier.bibliographicCitation | Basu, G., Roy, A. N., Bhattacharyya, S. K., & Ghosh, S. K. (2009). Construction of unpaved rural road using jute–synthetic blended woven geotextile – A case study. Geotextiles and Geomembranes, 27(6), 506–512. https://doi.org/10.1016/j.geotexmem.2009.03.004. | spa |
dc.identifier.bibliographicCitation | Bauer, G. E., & El Halim, A. O. A. (1987). The performance of geogrid reinforced road bases. Construction and Building Materials, 1(2), 71–75. https://doi.org/10.1016/0950-0618(87)90002-X. | spa |
dc.identifier.bibliographicCitation | Lyons, C. K., & Fannin, J. (2006a). A comparison of two design methods for unpaved roads reinforced with geogrids. Canadian Geotechnical Journal, 43(12), 1389–1394. https://doi.org/10.1139/t06-075. | spa |
dc.identifier.bibliographicCitation | Lyons, C. K., & Fannin, J. (2006b). A comparison of two design methods for unpaved roads reinforced with geogrids. Canadian Geotechnical Journal, 43(12), 1389–1394. https://doi.org/10.1139/t06-075. | spa |
dc.identifier.bibliographicCitation | Maaitah, O. N. (2012). Soil Stabilization by Chemical Agent. Geotechnical and Geological Engineering, 30(6), 1345–1356. https://doi.org/10.1007/s10706-012-9549-7. | spa |
dc.identifier.bibliographicCitation | Marto, A., Latifi, N., & Sohaei, H. (n.d.). Stabilization of Laterite Soil using GKS Soil Stabilizer. | spa |
dc.identifier.bibliographicCitation | Maubeuge, K. v., & Klompmaker, J. (2011). New Developments for Geogrid Reinforced Base Courses. In Geo-Frontiers 2011 (pp. 4624–4634). Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/41165(397)473. | spa |
dc.identifier.bibliographicCitation | Mexichem Soluciones Integrales. (2012). Manual de Diseño con Geosintéticos. (Geosotf Pavco, Ed.) (9th ed.). Bogotá. | spa |
dc.identifier.bibliographicCitation | Millien, A., Dragomir, M. L., Wendling, L., Petit, C., & Iliescu, M. (2012). Geogrid Interlayer Performance in Pavements: Tensile-Bending Test for Crack Propagation. In 7th RILEM International Conference on Cracking in Pavements (pp. 1209–1218). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-4566-7_115. | spa |
dc.identifier.bibliographicCitation | Milligan, G. W. E., Jewell, R. A., Houlsby, G. ., & Burd, H. J. (1989). New approach to the design of unpaved roads - part I. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 26(6), 25–29. https://doi.org/10.1016/0148-9062(89)91753-1. | spa |
dc.identifier.bibliographicCitation | Milligan, G. W. E., & Love, J. P. (1984). Model Testing of Geogrids Under an Aggregate Layer on Soft Ground. In N. L. Science & Engineering Research Council, Swindon, Engl (Ed.) (pp. 128–138). England: Engl, Thomas Telford, Londres, Engl. | spa |
dc.identifier.bibliographicCitation | Mishra, S., Sachdeva, S. N., & Manocha, R. (2019). Subgrade Soil Stabilization Using Stone Dust and Coarse Aggregate: A Cost Effective Approach. International Journal of Geosynthetics and Ground Engineering, 5(3), 20. https://doi.org/10.1007/s40891-019-0171-0. | spa |
dc.identifier.bibliographicCitation | Palmeira, E. M., & Antunes, L. G. S. (2010). Large scale tests on geosynthetic reinforced unpaved roads subjected to surface maintenance. Geotextiles and Geomembranes, 28(6), 547–558. https://doi.org/10.1016/j.geotexmem.2010.03.002. | spa |
dc.identifier.bibliographicCitation | Montejo Fonseca, A. (2002). www.litecsa.com.ec 2587713. (A. Montejo Fonseca, Ed.) (II Edición). Bogotá: Universidad Catolica de Colombia. | spa |
dc.identifier.bibliographicCitation | Mousavi, S. H., Gabr, M. A., & Borden, R. H. (2017). Optimum location of geogrid reinforcement in unpaved road. Canadian Geotechnical Journal, 54(7), 1047–1054. https://doi.org/10.1139/cgj-2016-0562. | spa |
dc.identifier.bibliographicCitation | Nader Ghafoori, Ph.D., P. ., & Sharbaf, M. (2016). Use of GEOGRID for Strengthening and Reducing the Roadway Structural Sections. Las Vegas. | spa |
dc.identifier.bibliographicCitation | Orrego Cabanillas, D. A. (2014). Análisis técnico-económico del uso de geomallas como refuerzo de bases granulares en pavimentos flexibles. Pontificia Universidad Católica del Perú. | spa |
dc.identifier.bibliographicCitation | Otero Téllez, D. F., & Montejo Ochoa, F. (2016). Evaluación del comportamiento mecánico de una estructura bicapa, reforzada con geomalla biaxial, compuesta por afirmado invías sobre subrasante blanda, aplicable a vías no pavimentadas. Pontificia Universidad Javeriana. | spa |
dc.identifier.bibliographicCitation | Pacheco-Torres, R., & Varela, F. (2019). Mechanical performance of cement-stabilised soil containing recycled glass as road base layer. Road Materials and Pavement Design, 1–17. https://doi.org/10.1080/14680629.2019.1602073. | spa |
dc.identifier.bibliographicCitation | Palmeira, E. M., & Antunes, L. G. S. (2010). Geosynthetic reinforced unpaved road performance after surface maintenance. 9th International Conference on Geosynthetics - Geosynthetics: Advanced Solutions for a Challenging World, ICG 2010, (May 2010), 1457–1460. | spa |
dc.identifier.bibliographicCitation | Palmeira, E., & Tatsuoka, F. (2008). Advances in geosynthetics materials and applications for soil reinforcement and environmental protection works. Electron J Geotech. | spa |
dc.identifier.bibliographicCitation | Perkins, S. W. (1999). Geosynthetic Reinforcement of Flexible Pavements: Laboratory Based Pavement Test Sections. Bozeman. https://doi.org/FHWA/MT-99-001/8138. | spa |
dc.identifier.bibliographicCitation | Perkins, S. W., & Ismeik, M. (1997). A Synthesis and Evaluation of Geosynthetic-Reinforced Base Layers in Flexible Pavements- Part II. Geosynthetics International, 4(6), 605–621. https://doi.org/10.1680/gein.4.0107. | spa |
dc.identifier.bibliographicCitation | Qian, Y., Han, J., Pokharel, S. K., & Parsons, R. L. (2011). Stress Analysis on Triangular-Aperture Geogrid-Reinforced Bases over Weak Subgrade under Cyclic Loading. Transportation Research Record: Journal of the Transportation Research Board, 2204(1), 83–91. https://doi.org/10.3141/2204-11. | spa |
dc.identifier.bibliographicCitation | Rahman, M. A., Arulrajah, A., Piratheepan, J., Bo, M. W., & Imteaz, M. A. (2014). Effect of Geogrids on Interface Shear Strength Properties of Recycled Crushed Brick. In Geo-Congress 2014 Technical Papers (pp. 3615–3624). Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/9780784413272.350. | spa |
dc.identifier.bibliographicCitation | Raymond, G., & Ismail, I. (2003). The effect of geogrid reinforcement on unbound aggregates. Geotextiles and Geomembranes, 21(6), 355–380. https://doi.org/10.1016/S0266-1144(03)00044-X. | spa |
dc.identifier.bibliographicCitation | Rimoldi, P., & Korulla, M. (2019). Design Model for Strength and Location of Geogrids for Road Stabilization (pp. 153–165). Pendergrass, Georgia: TenCate Geosynthetics Americas. https://doi.org/10.1007/978-981-13-6701-4_9. | spa |
dc.identifier.bibliographicCitation | Sadık Bakır, B., & Tolga Yılmaz, M. (2006). Discussion of “Subsurface Characterization at Ground Failure Sites in Adapazari, Turkey” by Jonathan D. Bray, Rodolfo B. Sancio, Turan Durgunoglu, Akin Onalp, T. Leslie Youd, Jonathan P. Stewart, Raymond B. Seed, Onder K. Cetin, Ertan Bol, M. B. Baturay, . Journal of Geotechnical and Geoenvironmental Engineering, 132(4), 537–539. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:4(537). | spa |
dc.identifier.bibliographicCitation | Salcedo Rodriguez, C. (2019). Del total de la red vial terciaria con la que cuenta Colombia, 96% está en mal estado. Retrieved August 17, 2019, from https://www.larepublica.co/infraestructura/del-total-de-la-red-vial-terciaria-con-la-que-cuenta-colombia-96-esta-en-mal-estado-2828335. | spa |
dc.identifier.bibliographicCitation | Sprague, C. J., Lothspeich, S., Chuck, F., & Goodrum, R. (2004). Geogrid Reinforcement of Road Base Aggregate — Measuring the Confinement Benefit. In Geotechnical Engineering for Transportation Projects (pp. 996–1005). Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/40744(154)87. | spa |
dc.identifier.bibliographicCitation | Sánchez, M., Wang, D., Briaud, J.-L., & Douglas, C. (2014). Typical geomechanical problems associated with railroads on shrink-swell soils. Transportation Geotechnics, 1(4), 257–274. https://doi.org/10.1016/j.trgeo.2014.07.002. | spa |
dc.identifier.bibliographicCitation | Saride, S., Chikyala, S. R., Puppala, A. J., & Harris, P. J. (2010). Effects of Organics on Stabilized Expansive Subgrade Soils. In Ground Improvement and Geosynthetics (pp. 155–164). Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/41108(381)21. | spa |
dc.identifier.bibliographicCitation | Sharma, R., Chen, Q., Abu-Farsakh, M., & Yoon, S. (2009). Analytical modeling of geogrid reinforced soil foundation. Geotextiles and Geomembranes, 27(1), 63–72. https://doi.org/10.1016/j.geotexmem.2008.07.002. | spa |
dc.identifier.bibliographicCitation | Sieira, A. C. C. F., Gerscovich, D. M. S., & Sayão, A. S. F. J. (2009). Displacement and load transfer mechanisms of geogrids under pullout condition. Geotextiles and Geomembranes, 27(4), 241–253. https://doi.org/10.1016/j.geotexmem.2008.11.012. | spa |
dc.identifier.bibliographicCitation | Sigurdsson, O. (1993). Geosynthetics Stabilization of Unpaved Roads on Soft Ground: a Field Evaluation. B.Sc., The Technical College of Iceland, 1991. The University of British Columbia. | spa |
dc.identifier.bibliographicCitation | Singh, M., Trivedi, A., & Shukla, S. K. (2019). Strength enhancement of the subgrade soil of unpaved road with geosynthetic reinforcement layers. Transportation Geotechnics, 19, 54–60. https://doi.org/10.1016/j.trgeo.2019.01.007. | spa |
dc.identifier.bibliographicCitation | Som, N., & Sahu, R. B. (1999). Bearing Capacity of a Geotextile-Reinforced Unpaved Road as a Function of Deformation: A Model Study. Geosynthetics International, 6(1), 1–17. https://doi.org/10.1680/gein.6.0140. | spa |
dc.identifier.bibliographicCitation | Sun, X., Han, J., Kwon, J., Parsons, R. L., & Wayne, M. H. (2015). Radial stresses and resilient deformations of geogrid-stabilized unpaved roads under cyclic plate loading tests. Geotextiles and Geomembranes, 43(5), 440–449. https://doi.org/10.1016/j.geotexmem.2015.04.018. | spa |
dc.identifier.bibliographicCitation | Sun, X., Han, J., Wayne, M. H., Parsons, R. L., & Kwon, J. (2014). Experimental Study on Resilient Behavior of Triaxial Geogrid-Stabilized Unpaved Roads. In Ground Improvement and Geosynthetics (pp. 353–362). Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/9780784413401.035. | spa |
dc.identifier.bibliographicCitation | Tabatabaei, S. A., & Rahman, A. (2013). The Effect of Utilization of Geogrids on Reducing the Required Thickness of Unpaved Roads. Advanced Materials Research, 712–715, 937–941. https://doi.org/10.4028/www.scientific.net/AMR.712-715.937. | spa |
dc.identifier.bibliographicCitation | Tang, X., Abu-Farsakh, M., Hanandeh, S., & Chen, Q. (2014). Evaluation of Geosynthetics in Unpaved Roads Built over Natural Soft Subgrade Using Full-Scale Accelerated Pavement Testing. In Geo-Congress 2014 Technical Papers (pp. 3035–3043). Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/9780784413272.295. | spa |
dc.identifier.bibliographicCitation | Tencate. (2014). Application of the Giroud – Han Design Method for Geosynthetic Reinforced Unpaved Roads with TenCate Mirafi ® Geosynthetics, (706). | spa |
dc.identifier.bibliographicCitation | Tensar, I. (2010). The properties and performance advantages of Tensar TriAxTM geogrids. Blackburn. | spa |
dc.identifier.bibliographicCitation | Tingle, J. S., & Webster, S. L. (2003). Corps of Engineers Design of Geosynthetic-Reinforced Unpawed Roads. Transportation Research Record: Journal of the Transportation Research Board, 1849(1), 193–201. https://doi.org/10.3141/1849-21. | spa |
dc.identifier.bibliographicCitation | Vennamaneni, S., Raju Aketi, N., & Paisa, S. (2018). Reduction in Pavement Thickness by Using Geogrid. International Journal of Engineering & Technology, 7(3.3), 17. https://doi.org/10.14419/ijet.v7i3.3.14473. | spa |
dc.identifier.bibliographicCitation | Voskamp, W. (2000). Index and Performance Testing a New Geogrid Made of Highly Oriented Straps. In Advances in Transportation and Geoenvironmental Systems Using Geosynthetics (pp. 360–372). Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/40515(291)24. | spa |
dc.identifier.bibliographicCitation | Bell JR, Hicks RG, et. al. (1980). Evaluation of Test Methods and Use Criteria for Geotechnical Fabrics in Highway Applications, Interim Report FHWA/RD-80/021. Federal Highway Administration, US Department of Transportation, 190. https://doi.org/PB81-156150. | spa |
dc.identifier.bibliographicCitation | Webster, S. L. (1993). Geogrid reinforced base courses for flexible pavements for light aircraft: test section construction, behavior under treffic, laboratory tests, and design criteria. Vicksburg, Mississipp. | spa |
dc.identifier.bibliographicCitation | Yoder, E., & M. W. Witczak. (1975). Principles of Pavement Design, Second Edition. (E. J. (University of M. Yoder, Ed.) (Second). Canada. | spa |
dc.identifier.bibliographicCitation | Young, S., Ismail, G., & Chong, A. (2019). Towards innovative design and construction standards for lime stabilised subgrades. IOP Conference Series: Materials Science and Engineering, 512, 12028. https://doi.org/10.1088/1757-899X/512/1/012028. | spa |
dc.identifier.bibliographicCitation | Yu, X., & Pradhan, A. (2017). Effect of Particle Shape on Geogrid-Reinforced Granules (pp. 109–116). https://doi.org/10.1007/978-981-10-1926-5_13. | spa |
dc.identifier.bibliographicCitation | Zhang, J., & Hurta, G. (2008a). Comparison of Geotextile and Geogrid Reinforcement on Unpaved Road, 530–537. https://doi.org/10.1061/40971(310)66. | spa |
dc.identifier.bibliographicCitation | Zhang, J., & Hurta, G. (2008b). Comparison of Geotextile and Geogrid Reinforcement on Unpaved Road. In GeoCongress 2008 (pp. 530–537). Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/40971(310)66. | spa |
dc.identifier.bibliographicCitation | Zornberg, J. (2011). Advances in the use of geosynthetics in pavement desing. Ce.Utexas.Edu, 1(September), 23–24. https://doi.org/10.1378/chest.128.2.609. | spa |
dc.identifier.bibliographicCitation | Bhandari, A., Han, J., & Parsons, R. L. (2015). Two-dimensional DEM analysis of behavior of geogrid-reinforced uniform granular bases under a vertical cyclic load. Acta Geotechnica, 10(4), 469–480. https://doi.org/10.1007/s11440-013-0299-3 | spa |
dc.identifier.bibliographicCitation | Burmister, D. M. (1958). Evaluation of Pavement Systems of the WASHO Road Test by Layered System Methods. Highway Research Board Bulletin, (177), 26–54. | spa |
dc.identifier.bibliographicCitation | Carter, G. R., & Dixon, J. H. (1995). Oriented polymer grid reinforcement. Construction and Building Materials, 9(6), 389–401. https://doi.org/10.1016/0950-0618(95)00068-2. | spa |
dc.identifier.bibliographicCitation | Cecconi, M., & Russo, G. (2012). Geotechnical Properties of Lime Stabilized Pyroclastic Soils. Electronic Journal of Geotechnical Engineering, 17, 2581–2597. https://doi.org/10893032. | spa |
dc.identifier.bibliographicCitation | Chaitanya, D. V. S. ., & Neeharika, P. (2019). Soil Stabilization using Geosynthetic Material (Steel Fibres). International Journal of Innovative Technology and Exploring Engineering, 8(6 Special), 553–556. https://doi.org/10.35940/ijitee.F1114.0486S419. | spa |
dc.identifier.bibliographicCitation | Collin, J. G., Kinney, T. C., & Fu, X. (1996). Full Scale Highway Load Test of Flexible Pavement Systems with Geogrid Reinforced Base Courses. Geosynthetics International, 3(4), 537–549. https://doi.org/10.1680/gein.3.0074. | spa |
dc.identifier.bibliographicCitation | Cruz, E. (2013). Influencia De Geomallas En Los Parámetros Mecánicos De Materiales Para Vías Terrestres. UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO. | spa |
dc.identifier.bibliographicCitation | Cuelho, E. V., & Perkins, S. W. (2017). Geosynthetic subgrade stabilization – Field testing and design method calibration. Transportation Geotechnics, 10, 22–34. https://doi.org/10.1016/j.trgeo.2016.10.002. | spa |
dc.identifier.bibliographicCitation | DANE. Censo general 2005 (2005). | spa |
dc.identifier.bibliographicCitation | Das, B. M. (2011). Fundamentos de ingeniería de cimentaciones. (S. R. Cervantes González & O. A. Ramírez Rosas, Eds.) (7 edición). Mexico. | spa |
dc.identifier.bibliographicCitation | Das, B. M. (2016). Use of geogrid in the construction of railroads. Innovative Infrastructure Solutions, 1(1), 15. https://doi.org/10.1007/s41062-016-0017-8. | spa |
dc.identifier.bibliographicCitation | Delgado Gómez, P. (2019). La reestructuración que necesita el transporte de carga. Retrieved May 2, 2020, from https://www.elespectador.com/economia/la-reestructuracion-que-necesita-el-transporte-de-carga-articulo-853987. | spa |
dc.identifier.bibliographicCitation | Departamento Nacional de Planeación. Mejoramiento de vías terciarias - vías de tercer orden (2018). Bogota: Subdirección Territorial y de Inversiones Públicas. | spa |
dc.identifier.bibliographicCitation | Douglas, R. A., & Valsangkar, A. J. (1992). Unpaved geosynthetic-built resource access roads: Stiffness rather than rut depth as the key design criterion. Geotextiles and Geomembranes, 11(1), 45–59. https://doi.org/10.1016/0266-1144(92)90012-Y. | spa |
dc.identifier.bibliographicCitation | Elleboudy, A. M., Saleh, N. M., & Salama, A. G. (2017). Assessment of geogrids in gravel roads under cyclic loading. Alexandria Engineering Journal, 56(3), 319–326. https://doi.org/10.1016/j.aej.2016.09.023. | spa |
dc.identifier.bibliographicCitation | Fabbri, A., Soudani, L., McGregor, F., & Morel, J.-C. (2019). Analysis of the water absorption test to assess the intrinsic permeability of earthen materials. Construction and Building Materials, 199, 154–162. https://doi.org/10.1016/j.conbuildmat.2018.12.014. | spa |
dc.identifier.bibliographicCitation | Faiz, A. (2012). The Promise of Rural Roads. The Promise of Rural Roads, (September). https://doi.org/10.17226/22711. | spa |
dc.identifier.bibliographicCitation | Fannin, R. J., & Sigurdsson, O. (1996). Field Observations on Stabilization of Unpaved Roads with Geosynthetics. Journal of Geotechnical Engineering, 122(7), 544–553. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:7(544). | spa |
dc.identifier.bibliographicCitation | Fernando, D., Téllez, O., & Montejo, F. (2016). Evaluación del comportamiento mecánico de una estructura bicapa , reforzada con geomalla biaxial , compuesta por afirmado INVÍAS sobre subrasante blanda , aplicable a vías no pavimentadas Evaluation of the mechanical behavior of a bilayer structure , rein. XV CONGRESO COLOMBIANO DE GEOTECNIA & II CONFERENCIA INTERNACIONAL ESPECIALIZADA EN ROCAS BLANDAS. CARTAGENA 5 AL 7 DE OCTUBRE DE 2016. | spa |
dc.identifier.bibliographicCitation | Geiger, D. R. (2003). Economic Analysis Primer: Benefit-Cost Analysis. (Federal Highway Administration’s, Ed.) (1st ed.). U.S. Department of Transportation Federal Highway Administration Office of Asset Management. | spa |
dc.identifier.bibliographicCitation | Geosynthetic Materials Association. (2000). Geosynthetic Reinforcement of the Aggregate Base/Subbase Courses of Pavement Structures. (AASHTO Committee 4E, Ed.) (2nd ed.). Roseville. | spa |
dc.identifier.bibliographicCitation | Giroud, J., Ah-Line, C., & Bonaparte, R. (1984). Design of unpaved roads with TENAX geogrids. Telford (Thomas) Limited, 116–127. | spa |
dc.identifier.bibliographicCitation | Giroud, J. P., & Han, J. (2004a). Design method for geogrid-reinforced unpaved roads. I. Development of design method. Journal of Geotechnical and Geoenvironmental Engineering, 130(8), 775–786. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:8(775). | spa |
dc.identifier.bibliographicCitation | Giroud, J. P., & Han, J. (2004b). Design Method for Geogrid-Reinforced Unpaved Roads. II. Calibration and Applications. Journal of Geotechnical and Geoenvironmental Engineering, 130(8), 787–797. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:8(787). | spa |
dc.identifier.bibliographicCitation | Giroud, J. P., & Han, J. (2012). The Giroud-Han design method for geosynthetic-reinforced unpaved roads. Geosynthetics, 30(1), 40–49. | spa |
dc.identifier.bibliographicCitation | Giroud, J. P., & Noiray, L. (1981). Geotextile-reinforced unpaved road design. Journal of Geotechnical and Geoenvironmental Engineering, 107(9), 1233–1254. https://doi.org/10.1016/0148-9062(82)90853-1. | spa |
dc.identifier.bibliographicCitation | Góngora, I. A. G., & Palmeira, E. M. (2012). Influence of fill and geogrid characteristics on the performance of unpaved roads on weak subgrades. Geosynthetics International, 19(2), 191–199. https://doi.org/10.1680/gein.2012.19.2.191. | spa |
dc.identifier.bibliographicCitation | Gonzales Bell, J. (2018). Colombia ocupa el puesto 97 en conectividad de carreteras según el Foro Económico Mundial. Retrieved August 18, 2019, from https://www.larepublica.co/especiales/especial-infraestructura/colombia-ocupa-el-puesto-97-en-conectividad-de-carreteras-segun-el-foro-economico-mundial-2795752. | spa |
dc.identifier.bibliographicCitation | Hammitt, G. M. (1970). Thickness Requirements For Unsurfaced Roads and Airfields, Bare Base Support Project 3782-65. (U. S. Army Engineer Waterways Experiment Station, Ed.) (2nd ed.). Vicksburg, Mississippi: Chief of Engineers and U. S. Air Force. | spa |
dc.identifier.bibliographicCitation | Han, J. (2013). Design of Planar Geosynthetic-Improved Unpaved and Paved Roads. In Pavement and Geotechnical Engineering for Transportation (pp. 31–41). Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/9780784412817.003. | spa |
dc.identifier.bibliographicCitation | Han, J., & Thakur, J. K. (2012). Use of Geosynthetics to Stabilize Recycled Aggregates in Roadway Construction. In ICSDEC 2012 (pp. 473–480). Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/9780784412688.057. | spa |
dc.identifier.bibliographicCitation | Holtz, R. D., Christopher, B. R., & Berg, R. R. (2008). Geosynthetic Design & Construction Guidelines Reference Manual. (U.S. Department of Transportation Federal Highway Administration, Ed.) (FHWA NHI-0). Washington, D.C.: Institute, National Highway. | spa |
dc.identifier.bibliographicCitation | Horton, M., Mazurowski, P., & Oliver, T. (2019). Incorporation of the Influence of Hexagonal Stabilisation Geogrids into Mechanistic-Empirical Pavement Design Method (pp. 165–179). https://doi.org/10.1007/978-981-13-6713-7_14. | spa |
dc.identifier.bibliographicCitation | Hu, Y. (2008). Study on Relationship Between Wheel Load and Rut Depth of Geogrid-Reinforced Unpaved Road. In Geotechnical Engineering for Disaster Mitigation and Rehabilitation (pp. 642–647). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-79846-0_80. | spa |
dc.identifier.bibliographicCitation | Huang, B., & Wu, H. (2009). Ensayo de laboratorio de desempeño de geomallas utilizando un equipo de ensayos de ruedas con cargas. Centro de Investigación del Transporte Universidad de Tennessee. Tennessee. | spa |
dc.identifier.bibliographicCitation | HUFENUS, R., RUEEGGER, R., BANJAC, R., MAYOR, P., SPRINGMAN, S., & BRONNIMANN, R. (2006). Full-scale field tests on geosynthetic reinforced unpaved roads on soft subgrade. Geotextiles and Geomembranes, 24(1), 21–37. https://doi.org/10.1016/j.geotexmem.2005.06.002. | spa |
dc.identifier.bibliographicCitation | Instituto Nacional de Vías. Análisis de Precios Unitarios, Gobierno de Colombia (2019). Bogotá, Colombia: Mintransporte. | spa |
dc.identifier.bibliographicCitation | Jarrett, P. M. (1984). Evaluation of Geogrids for Construction of Roadways Over Muskeg.Jarrett, P. M. (1984). Evaluation of Geogrids for Construction of Roadways Over Muskeg. Royal Military Coll of Canada, 149–153. Royal Military Coll of Canada, 149–153. | spa |
dc.identifier.bibliographicCitation | Jeon, H.-Y. (2010). Evaluation of long-term behaviours of geogrids: a review. Proceedings of the Institution of Civil Engineers - Ground Improvement, 163(4), 189–195. https://doi.org/10.1680/grim.2010.163.4.189. | spa |
dc.identifier.bibliographicCitation | Jrade, A., & Alkass, S. (2007). Computer-Integrated System for Estimating the Costs of Building Projects. Journal of Architectural Engineering, 13(4), 205–223. https://doi.org/10.1061/(ASCE)1076-0431(2007)13:4(205). | spa |
dc.identifier.bibliographicCitation | Kawalec, J., Gołos, M., & Mazurowski, P. (2018). Environmental aspects of the implementation of geogrids for pavement optimisation. IOP Conference Series: Materials Science and Engineering, 356, 12018. https://doi.org/10.1088/1757-899X/356/1/012018. | spa |
dc.identifier.bibliographicCitation | Keller, G. R. (2016a). Application of geosynthetics on low-volume roads. Transportation Geotechnics, 8, 119–131. https://doi.org/10.1016/j.trgeo.2016.04.002. | spa |
dc.identifier.bibliographicCitation | Keller, G. R. (2016b). Application of geosynthetics on low-volume roads. Transportation Geotechnics, 8, 119–131. https://doi.org/10.1016/j.trgeo.2016.04.002. | spa |
dc.identifier.bibliographicCitation | Kodicherla, S. P. K., & Nandyala, D. K. (2019). Influence of randomly mixed coir fibres and fly ash on stabilization of clayey subgrade. International Journal of Geo-Engineering, 10(1), 3. https://doi.org/10.1186/s40703-019-0099-1. | spa |
dc.identifier.bibliographicCitation | Koerner, R. M. (2012). Designing with geosynthetics (Sexta Edic). https://doi.org/10.1017/CBO9781107415324.004. | spa |
dc.identifier.bibliographicCitation | Koslanant, S., Onitsuka, K., & Negami, T. (2006). Influence of salt additive in lime stablization on organic clay. Geotechnical Engineering, 37(2), 95–101. https://doi.org/00465828. | spa |
dc.identifier.bibliographicCitation | Latha, G., Nair, A., & Hemalatha, M. (2010). Performance of geosynthetics in unpaved roads. International Journal of Geotechnical Engineering, 4(3), 337–349. https://doi.org/10.3328/IJGE.2010.04.03.337-349. | spa |
dc.identifier.bibliographicCitation | Lawton, E. C., Mokashi, A. A., & Fox, N. S. (1996). Field Tests and Numerical Analyses of Subgrade Soil Reinforced with Grids of Stabilized Granular Columns. Transportation Research Record: Journal of the Transportation Research Board, 1534(1), 72–79. https://doi.org/10.1177/0361198196153400111. | spa |
dc.identifier.bibliographicCitation | Leite Gembus, F., & Thesseling, B. (2015). Polyester geogrids as asphalt reinforcement - a sustainable solution for pavement rehabilitation. Huesker Syntethic GmbH. https://doi.org/10.1201 / b18538-91. | spa |
dc.identifier.bibliographicCitation | Leng, J., & Gabr, M. A. (2006). Deformation–Resistance Model for Geogrid-Reinforced Unpaved Road. Transportation Research Record: Journal of the Transportation Research Board, 1975(1), 146–154. https://doi.org/10.1177/0361198106197500116. | spa |
dc.identifier.bibliographicCitation | Leu, W., State, D., Engineer, A. I. D., Tasa, L., State, D., & Engineer, A. I. D. (2001). Applications of geotextiles, geogrids, and geocells in Northern Minnesota. Conferencia de Geosintéticos 2001; Portland, Oregon, 809–821. | spa |
dc.identifier.bibliographicCitation | Lipomi, D., & Wayne, M. H. (2014). Geosynthetic Solutions for Paved and Unpaved Applications. In Shale Energy Engineering 2014 (pp. 565–575). Reston, VA: American Society of Civil Engineers. https://doi.org/10.1061/9780784413654.059. | spa |
dc.identifier.bibliographicCitation | Liu, C.-N., Zornberg, J. G., Chen, T.-C., Ho, Y.-H., & Lin, B.-H. (2009). Behavior of Geogrid-Sand Interface in Direct Shear Mode. Journal of Geotechnical and Geoenvironmental Engineering, 135(12), 1863–1871. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000150. | spa |
dc.identifier.bibliographicCitation | Liu, L., Wehbe, G., & Sisovic, J. (2010). The Accuracy of Hybrid Estimating Approaches: A Case Study of an Australian State Road & Traffic Authority. The Engineering Economist, 55(3), 225–245. https://doi.org/10.1080/0013791X.2010.502962. | spa |
dc.identifier.instname | instname:Universidad Antonio Nariño | spa |
dc.identifier.reponame | reponame:Repositorio Institucional UAN | spa |
dc.identifier.repourl | repourl:https://repositorio.uan.edu.co/ | spa |
dc.identifier.uri | http://repositorio.uan.edu.co/handle/123456789/2130 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Antonio Nariño | spa |
dc.publisher.campus | Bogotá - Sur | spa |
dc.publisher.faculty | Facultad de Ingeniería Civil | spa |
dc.publisher.program | Ingeniería Civil | spa |
dc.rights | Acceso abierto | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.rights.license | Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-sa/4.0/ | spa |
dc.subject | refuerzo | es_ES |
dc.subject | geomalla | es_ES |
dc.subject | materiales pétreos | es_ES |
dc.subject.keyword | reinforcement | es_ES |
dc.subject.keyword | geogrids | es_ES |
dc.subject.keyword | petty materials | es_ES |
dc.title | Uso de Geomallas Multiaxiales Como Refuerzo en Vías sin Pavimentar con Suelos Blandos o Subrasantes Débiles | es_ES |
dc.type | Trabajo de grado (Pregrado y/o Especialización) | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
Files
Original bundle
1 - 2 of 2
- Name:
- 2020EduardoAndresDiazCepeda.pdf
- Size:
- 3.47 MB
- Format:
- Adobe Portable Document Format
- Description:
- Trabajo de grado
- Name:
- 2020AutorizacióndeAutores.pdf
- Size:
- 951.65 KB
- Format:
- Adobe Portable Document Format
- Description:
- Autorización de autores
License bundle
1 - 1 of 1
- Name:
- license.txt
- Size:
- 2.65 KB
- Format:
- Item-specific license agreed upon to submission
- Description: