Clasificador de Máquinas de Vectores de Soporte para el Apoyo en la Detección del Grado I y II de Osteoartritis de Rodilla Según Kellgren- Lawrence Mediante Imágenes de Rayos X.

dc.contributor.advisorTriana Martínez, Jenniffer Carolinaspa
dc.contributor.authorSanchez Vasquez, Maria Josespa
dc.contributor.authorBastos Claros, Carlos Albertospa
dc.creator.cedula1075312324spa
dc.creator.cedula1075311566spa
dc.creator.cedula38212233spa
dc.date.accessioned2021-03-10T20:24:19Z
dc.date.available2021-03-10T20:24:19Z
dc.date.issued2020-12-02spa
dc.descriptionPropiaes_ES
dc.description.abstractThe purpose of this project is to implement a Support Vector Machine (SVM) classifier, based on the Kellgren-Lawrence (KL) grade classification method, and the use of X-ray images (XR), with the objective of supporting the trauma specialist's diagnosis in the detection of knee Osteoarthritis (OA) grade according to the above-mentioned classification, in Orthopedic and Traumatology of the Medilaser Clinic of Neiva treated between the months of June and August 2020. It is expected that this project will allow the categorization of the degree of Osteoarthritis (OA) of the knee supporting the diagnosis of the specialist, in such a way that the amount of tests in addition to those previously named is minimized to determine a diagnosis of this pathology.eng
dc.description.abstractEl propósito de este proyecto es implementar un clasificador de Máquina de Vectores de Soporte (SVM), basándose en el método de clasificación de la Escala de Kellgren-Lawrence (KL), y la utilización de imágenes de rayos x (RX), con el objetivo de apoyar en el diagnóstico del especialista en traumatología en la detección del grado Osteoartritis (OA) de rodilla de acuerdo a la clasificación antes mencionada, en pacientes de Ortopedia y Traumatología de la Clínica Medilaser de Neiva tratados entre los meses de junio y agosto de 2020. Se espera que este proyecto permita categorizar el grado de Osteoartritis (OA) de rodilla apoyando el diagnóstico del especialista, de tal manera que se minimice la cantidad de pruebas además de las nombradas anteriormente para determinar un diagnóstico de esta patología.spa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero(a) Electrónico(a)spa
dc.description.funderFinanciación estudiantes 2'270.000 COP, Financiación UAN 1'009.520 COPes_ES
dc.description.notesPresencialspa
dc.description.sponsorshipOtrospa
dc.identifier.bibliographicCitationAgarap FA. (2018). A Neural Network Architecture Combining Gated Recurrent Unit (GRU) and Support Vector Machine (SVM) for Intrusion Detection in Network Traffic Data. 10th International Conference on Machine Learning and Computing, pp. 26-30.spa
dc.identifier.bibliographicCitationAlam S, K. M.-Y. (2016). Performance of classification based on PCA, linear SVM, and Multi-kernel SVM. Eighth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 987- 989.spa
dc.identifier.bibliographicCitationAmat Rodrigo J. (2017, 04). Máquinas de Vector Soporte (Support Vector Machines, SVMs). Retrieved from https://www.cienciadedatos.net/documentos/34_maquinas_de_vector_soporte_support_vect or_machines#Informaci%C3%B3n_sesi%C3%B3nspa
dc.identifier.bibliographicCitationArregui Espinoza JM, Y. A. (2016). Utilidad de rayos x digital en el diagnóstico de artrosis de rodilla en pacientes de 50 a 60 años de edad en el Hospital Privado Northospital de la ciudad de Quito. Quito: UCE.spa
dc.identifier.bibliographicCitationBradley J. Erickson, P. K. (2017). Machine Learning for Medical Imaging. RadioGraphics, vol. 37, no. 2.spa
dc.identifier.bibliographicCitationBraun, H. a. (2012). Diagnosis of osteoarthritis: Imaging. Bone, pp. 278-288.spa
dc.identifier.bibliographicCitationC. Cortes and V. Vapnik. (1995). Support-Vector Networks, Machine Learning. Springer, pp. 273- 297.spa
dc.identifier.bibliographicCitationC. Wang, L. L. (2011). Face Recognition Based on Principle Component Analysis and Support Vector Machine. 3rd International Workshop on Intelligent Systems and Applications, pp.1-4.spa
dc.identifier.bibliographicCitationCaleta, E. (2011). Artritis de la rodilla. Retrieved from Dr. Esteban Caleta Especialista en ortopedia y traumatologia Reemplazos articulares, Cirugia artroscopica: http://www.drestebancaleta.com.ar/index.php?PGN=51spa
dc.identifier.bibliographicCitationCapapé, D. D. (2020). Cirugía Ortopédica y Traumatología Deportiva. Retrieved from Artrosis de rodilla (Gonartrosis): http://doctorlopezcapape.com/cirugia-ortopedica/artrosis-de-rodilla- gonartrosisspa
dc.identifier.bibliographicCitationCardona H.D.V, O. Á. (2014). Automatic Recognition of Microcalcifications in Mammography Images through Fractal Texture Analysis. Springer, Cham, Lecture Notes in Computer Science, vol 8888.spa
dc.identifier.bibliographicCitationCarmona Suarez, E. (2016). Tutorial sobre Máquinas de Vectores Soporte (SVM). Universidad Nacional de Educacion a Distancia (UNED), Madrid- España, pp. 1-27.spa
dc.identifier.bibliographicCitationCartas Solis U, P. H. (2015). Demography broad in the knees osteoarthritis. Revista Cubana de Reumatología, vol.17 no.1.spa
dc.identifier.bibliographicCitationChen, P. (2018, 09 03). Knee Osteoarthritis Severity Grading Dataset. Retrieved from Mendeley: https://data.mendeley.com/datasets/56rmx5bjcr/1spa
dc.identifier.bibliographicCitationCheng-Jin Du, D.-W. S. (2008). Histogram Equalization. ScienceDirect.spa
dc.identifier.bibliographicCitationDhabhai, A. K. (2016). Empirical Study of Image Classification Techniques to Classify the Image using SVM: A Review. International Journal of Innovative Research in Computer and Communication Engineering, pp. 1-6.spa
dc.identifier.bibliographicCitationDhabhai. A, K. G. (2016). Empirical Study of Image Classification Techniques to Classify the Image using SVM: A Review. International Journal of Innovative Research in Computer and Communication Engineering, pp. 1-6.spa
dc.identifier.bibliographicCitationdrzezo. (2017, 04 20). Imaging for osteoarthritis. Retrieved from PHYSICAL MEDICINE & REHABILITATION : https://musculoskeletalkey.com/imaging-for-osteoarthritis/spa
dc.identifier.bibliographicCitationFarias Concha NM. (2011, 12). MÁQUINAS VECTORIALES HÍBRIDAS PARA CLASIFICAR ACCIDENTES DE TRANSITO EN LA REGION METROPOLITANA . Retrieved from Pontificia Universidad Catolica de Valparaiso : http://opac.pucv.cl/pucv_txt/Txt- 9500/UCF9980_01.pdfspa
dc.identifier.bibliographicCitationFelson, D. (1988). Epidemiology of hip and knee osteoarthritis. Oxford Journals, pp.1-28.spa
dc.identifier.bibliographicCitationFierro J. (01 de 05 de 2020). Director medico de la Clinica Medilaser de Neiva. (I. d. grado, Entrevistador)spa
dc.identifier.bibliographicCitationFlandry, F. M. (2011). Normal Anatomy and Biomechanics of the Knee. Sports Medicine and Arthroscopy Review, pp. 82-92.spa
dc.identifier.bibliographicCitationFULKERSON J P, G. H. (1980). Anatomy of the Knee Joint Lateral Retinaculum. Clinical Orthopaedics and Related Research, pp. 183-188.spa
dc.identifier.bibliographicCitationGarcia Balboa, J. F. (2018). Homogeneity Test for Confusion Matrices: A Method and an Example. IEEE International Geoscience and Remote Sensing Symposium, pp. 1203-1205.spa
dc.identifier.bibliographicCitationGarcia-Balboa, J. A.-F.-L.-A. (2018). Homogeneity Test for Confusion Matrices: A Method and an Example. IEEE International Geoscience and Remote Sensing Symposium, pp. 1203-1205spa
dc.identifier.bibliographicCitationGavrilov Z. (n.d.). SVM Tutorial. Retrieved from https://web.mit.edu/zoya/www/SVM.pdfspa
dc.identifier.bibliographicCitationGonzalez R, B. A. (2017). Application of Support Vector Machines (SVM) for clinical diagnosis of Parkinson's Disease and Essential Tremor. Revista Iberoamericana de Automática e Informática Industrial RIAI, pp. 394-405.spa
dc.identifier.bibliographicCitationGuermazi, A. D. (2015). Severe radiographic knee osteoarthritis – does Kellgren and Lawrence grade 4 represent end stage disease? – the MOST study. Osteoarthritis and Cartilage, pp. 1499-1505.spa
dc.identifier.bibliographicCitationGuo H, W. W. (2009). A novel learning model-Kernel Granular Support Vector Machine. International Conference on Machine Learning and Cybernetics, pp. 930-935.spa
dc.identifier.bibliographicCitationGuyon I, G. S. (2008). Freature Extraction Foundation and Aplications. Poland: Springer.spa
dc.identifier.bibliographicCitationHaidekker, M. A. (2011). Advanced Biomedical Image Analysis. New Jersey: John Wiley & Sons. Incspa
dc.identifier.bibliographicCitationHEALTH, S. C. (2020). Lesiones de ligamento de la rodilla. Retrieved from STANFORD CHILDREN'S HEALTH: https://www.stanfordchildrens.org/es/topic/default?id=ligamentinjuriestotheknee-85-P04023spa
dc.identifier.bibliographicCitationHertzmann A, F. D. (2015). Support Vector Machines. Retrieved from http://www.cs.toronto.edu/~mbrubake/teaching/C11/Handouts/SupportVectorMachines.pdfspa
dc.identifier.bibliographicCitationHu, J. Z. (2009). Curvilinear thresholding method for noisy images based on 2D histogram. IEEE International Conference on Robotics and Biomimetics, pp. 1014-1019.spa
dc.identifier.bibliographicCitationHUAN-JUN, L. y.-N.-F. (2005). A METHOD TO CHOOSE KERNEL FUNCTION AND ITS PARAMETERS FOR SUPPORT VECTOR MACHINES. Fourth International Conference on Machine Learning and CyberneticS, pp. 4277-4280.spa
dc.identifier.bibliographicCitationIArtificial.net. (n.d.). Retrieved from https://www.iartificial.net/maquinas-de-vectores-de-soporte- svm/#:~:text=El%20truco%20del%20kernel%20consiste,con%20una%20superficie%20de% 20decisi%C3%B3nspa
dc.identifier.bibliographicCitationJakkula V. (2006). Tutorial on Support Vector Machine (SVM). Washington State: School of EECS, Washington State University.spa
dc.identifier.bibliographicCitationKhalid, R. R. (2015). Enhanced dynamic quadrant histogram equalization plateau limit for image contrast enhancement. Fifth InternationalConference on Digital Information and Communication Technology and its Applications (DICTAP), pp. 86-91.spa
dc.identifier.bibliographicCitationKim, K. G. (2016). Deep Learning. Healtcare Informatics Research, pp. 351-354.spa
dc.identifier.bibliographicCitationKoonsanit, K. T. (2017). Image enhancement on digital x-ray images using N-CLAHE. Biomedical Engineering International Conference (BMEiCON), pp. 1-4.spa
dc.identifier.bibliographicCitationKwang Gi, K. (2016). Deep Learning. Healtcare Informatics Research, pp. 351-354.spa
dc.identifier.bibliographicCitationLopez Diaz, A. (2018). Fundamentos Matematicos de los Metodos Kernel para Aprendizaje Supervisado. Universidad de Sevilla. DEPARTAMENTO: CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL, pp. 1-73.spa
dc.identifier.bibliographicCitationLópez Pineda G. (2017, 05). Modelos de regresión para datos funcionales por la metodología de Kernel reproductor en espacios de Hilbert. Retrieved from BUAP: https://repositorioinstitucional.buap.mx/handle/20.500.12371/488spa
dc.identifier.bibliographicCitationLópez-Portilla Vigil, B. M. (2016). Implementación del Algoritmo de Otsu sobre FPGA. Revista Cubana de Ciencias Informáticas. Retrieved from http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2227- 18992016000300002&lng=es&tlng=es.spa
dc.identifier.bibliographicCitationLovejoy, C. (2007). The natural history of human gait and posture: Part 3. The knee. Gait & Posture, pp. 325-341.spa
dc.identifier.bibliographicCitationLuijkx, T. &. (2016). Kellgren and Lawrence system for classification of osteoarthritis of knee. Retrieved from http://radiopaedia. org/articles/kellgren-and-lawrencesystem-for- classification-of-osteoarthritis-of-kneespa
dc.identifier.bibliographicCitationMark D. Kohn, A. A. (2016). Classifications in Brief: Kellgren-Lawrence Classification of Osteoarthritis. Clinical Orthopaedics and Related Research, pp. 1886-1893.spa
dc.identifier.bibliographicCitationMartinez Figueroa R, M. F. (2017). Knee Osteoarthritis (osteoarthrosis). Revista Chilena de Ortopedia y Traumatología, pp. 45-51.spa
dc.identifier.bibliographicCitationMartinez, D. A. (2020, 05 28). Caracteristicas mas relevantes de la rodilla. (M. J. Bastos, Interviewer)spa
dc.identifier.bibliographicCitationMartínez, V. G. (2013). TÉCNICAS DE UMBRALIZACIÓN PARA LA DETECCIÓN DE ANOMALÍAS EN LA PARED AÓRTICA MEDIANTE OCT. UNIVERSIDAD DE CANTABRIA.spa
dc.identifier.bibliographicCitationMatlab. (2020). MathWorks. Retrieved from regionprops: https://www.mathworks.com/help/images/ref/regionprops.htmlspa
dc.identifier.bibliographicCitationMatlab. (2020). MathWorks. Retrieved from Support Vector Machines for Binary Classification: https://www.mathworks.com/help/stats/support-vector-machines-for-binary-classification.htmlspa
dc.identifier.bibliographicCitationMatlab. (2020). MathWorks. Retrieved from Support Vector Machines for Binary Classification: https://www.mathworks.com/help/stats/support-vector-machines-for-binary-classification.htmlspa
dc.identifier.bibliographicCitationMLMath.io. (2013, 02 13). Math behind SVM(Support Vector Machine). Retrieved from https://medium.com/@ankitnitjsr13/math-behind-svm-support-vector-machine-864e58977fdbspa
dc.identifier.bibliographicCitationMLMath.io. (2019, 02 09). Deep Learning. Retrieved from Math behind SVM (Support Vector Machine): https://medium.com/@ankitnitjsr13/math-behind-support-vector-machine-svm- 5e7376d0ee4d#:~:text=SVM%20is%20one%20of%20the,versatile%20supervised%20machi ne%20learning%20algorithm.&text=The%20main%20objective%20of%20SVM,blue%20and %20pink%20classes%20ballsspa
dc.identifier.bibliographicCitationMori, M. (2010). Preprocessing techiniques in character recognition. Rijeka, Croatia: Character Recognition.spa
dc.identifier.bibliographicCitationMoya-Angeler J, V. J. (2016). Valuation of the degenerative process joint of the knee by magnetic resonance imaging. Revista Latinoamericana de Cirugía Ortopédica, pp. 88-94.spa
dc.identifier.bibliographicCitationNavale DI, H. R. (2015). Block based texture analysis approach for knee osteoarthritis identification using SVM. IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), pp. 338-341spa
dc.identifier.bibliographicCitationNoble, W. (2006). What is a support vector machine? Nat Biotechnol , pp. 1565-1567.spa
dc.identifier.bibliographicCitationOTSU N. (1979). A Tlreshold Selection Method from Gray-Level Histograms. 2EEE TRANSACTIONS ON SYSTREMS, MAN, AND CYBERNETICS, VOL. SMC-9, NO. 1, pp.62- 66spa
dc.identifier.bibliographicCitationPandey, M. B. (2018). An anatomization of noise removal techniques on medical image. International Conference on Innovation and Challenges in Cyber Security (ICICCS- INBUSH), pp. 224–229.spa
dc.identifier.bibliographicCitationPaoletti ME, H. M. (2020). Estudio Comparativo de Técnicas de Clasificación de Imágenes Hiperespectrales. Revista Iberoamericana de Automática e Informática industrial, pp. 129- 137.spa
dc.identifier.bibliographicCitationPatin aka, F. (2003). An Introduction To Digital Image Processing. pp.1-49.spa
dc.identifier.bibliographicCitationPineda, G. L. (2017). Modelos de regresión para datos funcionales por la metodología de Kernel reproductor en espacios de Hilbert. Benemérita Universidad Autónoma de Puebla. Retrieved from https://hdl.handle.net/20.500.12371/488spa
dc.identifier.bibliographicCitationPizzi, N. P. (2006). Confusion Matrix. ScienceDirect.spa
dc.identifier.bibliographicCitationQ. Wang, H. Z. (2012). Algorithm for segmentation based on an improved three-dimensional Otsu's thresholding. International Conference on Computer Science and Network Technology, pp. 1737-1740.spa
dc.identifier.bibliographicCitationRajith B., S. M. (2016). Edge Preserved De-noising Method for Medical X-Ray Images Using Wavelet Packet Transformation. Emerging Research in Computing, Information, Communication and Applications. Springer, New Delhi.spa
dc.identifier.bibliographicCitationRajith, B. S. (2016). Edge Preserved De-noising Method for Medical X-Ray Images Using Wavelet Packet Transformation. Emerging Research in Computing, Information, Communication and Applications. Springer, New Delhi.spa
dc.identifier.bibliographicCitationRamamurthy, P. (1995). FACTORS CONTROLLING THE QUALITY OF RADIOGRAPY AND THE QUALITY ASSURANCE. X-ray, pp. 37-41.spa
dc.identifier.bibliographicCitationRamon Alcala J, N. G. (2008). La imagen digital y su tratamiento. Cuenca: MIDECIANTspa
dc.identifier.bibliographicCitationRoman V. (2019, 03 29). Aprendizaje Supervisado: Introducción a la Clasificación y Principales Algoritmos. Retrieved from Medium: https://medium.com/datos-y-ciencia/aprendizaje- supervisado-introducci%C3%B3n-a-la-clasificaci%C3%B3n-y-principales-algoritmos- dadee99c9407spa
dc.identifier.bibliographicCitationRuss, J. (1990). Image Processing. In: Computer-Assisted Microscopy. Boston, MA: Springer.spa
dc.identifier.bibliographicCitationS. Han, C. Q. (2014). Parameter selection in SVM with RBF kernel function. World Automation Congress 2012, Puerto Vallarta, Mexico, pp. 1-4.spa
dc.identifier.bibliographicCitationSahu SK, P. A. (2015). GP-SVM: Tree Structured Multiclass SVM with Greedy Partitioning. International Conference on Information Technology (ICIT), pp. 142-147.spa
dc.identifier.bibliographicCitationShamir L, L. S. (2009). Early detection of radiographic knee osteoarthritis using computer-aided analysis. Osteoarthritis and Cartilage, pp. 1307-1312. vol 17.spa
dc.identifier.bibliographicCitationShamir, L. (2009). Knee X-Ray Image Analysis Method for Automated Detection of Osteoarthritis. IEEE Transactions on Biomedical Engineering, pp. 407-415.spa
dc.identifier.bibliographicCitationSharma S, S. V. (2016). Detection of Osteoarthritis using SVM. International Conference on Computing for Sustainable Global Development (INDIACom), pp. 2997-3002.spa
dc.identifier.bibliographicCitationSolis Cartas U, C. B. (2018). Comorbidities and quality of life in Osteoarthritis. Revista Cubana de Reumatología, vol.20 no.2.spa
dc.identifier.bibliographicCitationSolis Cartas, U. d. (2014). Osteoartritis. Características sociodemográficas. Revista Cubana de Reumatología, pp. 97-103 no.2.spa
dc.identifier.bibliographicCitationSonka M, H. V. (2013). Image Processing, Analysis, and Machine Vision. EEUU: Cengage Learningspa
dc.identifier.bibliographicCitationSuykens J. A. K, S. (2001). Nonlinear modelling and support vector machines. 18th IEEE Instrumentation and Measurement Technology Conference, pp. 287-294.spa
dc.identifier.bibliographicCitationSzeliski, R. (2011). Computer Vision. Washington, USA: Springer.spa
dc.identifier.bibliographicCitationThimmiaraja, J. S. (2014). Histogram Equalization for Image Enhancement Using MRI Brain Images. World Congress on Computing and Communication Technologies, pp. 80-83.spa
dc.identifier.bibliographicCitationTromberg BJ. (n.d.). Tomografía Computarizada (TC). Retrieved from National Institute of Biomedical Imaging and Bioengieering: https://www.nibib.nih.gov/espanol/temas- cientificos/tomograf%C3%ADa-computarizada-tcspa
dc.identifier.bibliographicCitationTurner A Blackburn, M. E. (1980). Knee Anatomy: A Brief Review. Physical Therapy, pp. 1556- 1560. vol 60, Issue 12.spa
dc.identifier.bibliographicCitationViatela Ardila, G. (2001). Curso Tecnologia de la Informacion y Comunicaciones por Video Interractivo. Bogota D.C: IICA.spa
dc.identifier.bibliographicCitationWang R. (2016, 08 19). Soft Margin SVM. Retrieved from Support Vector Machine: http://fourier.eng.hmc.edu/e161/lectures/svm/node5.htmlspa
dc.identifier.bibliographicCitationWang, Q. Z. (2012). Algorithm for segmentation based on an improved three-dimensional Otsu's thresholding. International Conference on Computer Science and Network Technology, pp. 1737-1740.spa
dc.identifier.bibliographicCitationXu K, W. C. (2014). A MapReduce based Parallel SVM for Email. JOURNAL OF NETWORKS, VOL. 9, NO. 6, pp. 1640-1646.spa
dc.identifier.bibliographicCitationYang Y, W. J. (2012). Improving SVM classifier with prior knowledge in microcalcification detection1. IEEE International Conference on Image Processing, pp. 2837-2840.spa
dc.identifier.bibliographicCitationYin-Wen C, C.-J. L. (2008). Proceedings of the Workshop on the Causation and Prediction Challenge at WCCI. PMLR, pp. 53-64.spa
dc.identifier.bibliographicCitationYu, D. L. (2009). Otsu Method and K-means. Ninth International Conference on Hybrid Intelligent Systems, Shenyang, pp. 344-349.spa
dc.identifier.bibliographicCitationZahurul S, Z. S. (2010). An Adept Edge Detection Algorithm for Human Knee Osteoarthritis Images. International Conference on Signal Acquisition and Processing, pp.375-379.spa
dc.identifier.bibliographicCitationZhang Y, J. J. (2010). Epidemiology of Osteoarthritis. Clinics in Geriatric Medicine, pp. 355-369.spa
dc.identifier.bibliographicCitationZhou, S. K. (2016). Medical Image Recognition Segmentation and Parsing. London UK, San Diego CA: ELSEVIER. INC.spa
dc.identifier.instnameinstname:Universidad Antonio Nariñospa
dc.identifier.reponamereponame:Repositorio Institucional UANspa
dc.identifier.repourlrepourl:https://repositorio.uan.edu.co/spa
dc.identifier.urihttp://repositorio.uan.edu.co/handle/123456789/3159
dc.language.isospaspa
dc.publisherUniversidad Antonio Nariñospa
dc.publisher.campusNeiva Buganvilesspa
dc.publisher.facultyFacultad de Ingeniería Mecánica, Electrónica y Biomédicaspa
dc.publisher.programIngeniería Electrónicaspa
dc.rightsAcceso abierto
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAttribution-NoDerivatives 4.0 International (CC BY-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nd/4.0/spa
dc.subjectOsteoartritises_ES
dc.subjectSVMes_ES
dc.subjectAprendizaje de máquinaes_ES
dc.subjectCaracterísticas Kellgren-Lawrencees_ES
dc.subjectRayos Xes_ES
dc.subject.keywordOsteoarthritises_ES
dc.subject.keywordSVMes_ES
dc.subject.keywordMachine Learninges_ES
dc.subject.keywordKellgren-Lawrence Featureses_ES
dc.subject.keywordX- Rayes_ES
dc.titleClasificador de Máquinas de Vectores de Soporte para el Apoyo en la Detección del Grado I y II de Osteoartritis de Rodilla Según Kellgren- Lawrence Mediante Imágenes de Rayos X.es_ES
dc.typeTrabajo de grado (Pregrado y/o Especialización)spa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
Files
Original bundle
Now showing 1 - 3 of 3
thumbnail.default.alt
Name:
2020MariaJoseSanchezVasquez.pdf
Size:
2.22 MB
Format:
Adobe Portable Document Format
Description:
Trabajo de grado
thumbnail.default.alt
Name:
2020AutorizaciondeAutores2.pdf
Size:
358.96 KB
Format:
Adobe Portable Document Format
Description:
Autorización de Autores
thumbnail.default.alt
Name:
2020AutorizaciondeAutores.pdf
Size:
332.55 KB
Format:
Adobe Portable Document Format
Description:
Autorización de Autores
License bundle
Now showing 1 - 1 of 1
thumbnail.default.alt
Name:
license.txt
Size:
3.2 KB
Format:
Item-specific license agreed upon to submission
Description: