Revisión Bibliográfica del uso de materiales innovadores en el diseño y construcción de puentes

dc.contributor.advisorManrique Espíndola, Ramón de Jesússpa
dc.contributor.authorLeyton Montealegre, Jennifer Camilaspa
dc.creator.cedula20481919608spa
dc.date.accessioned2023-11-29T15:29:34Z
dc.date.available2023-11-29T15:29:34Z
dc.date.issued2023-11-23spa
dc.description.abstractThe study is conducted using the Parsifal tool, which serves to carry out an assessment of scientific and technical documentation associated with innovative materials in the design, construction, and maintenance of bridges. The main objective is to identify trends and progress in the implementation of these materials throughout the life cycle of bridge structures. Articles from major academic sources were collected and analyzed, with a notable contribution from Scopus in the article selection process. The results indicate a noticeable increase in research on innovative materials from 2018, possibly driven by technological advances, demands for safer and more sustainable infrastructure, and public awareness. Findings are categorized into three areas: bridge design, construction, and maintenance, revealing the influence of materials such as Ultra HighStrength Concrete and Fiber-Reinforced Polymers. Furthermore, the characteristics and feasibility of these materials are evaluated, highlighting their durability, strength, and construction efficiency, as well as their environmental impact. Despite higher initial costs, it is evident that their availability and long-term advantages are quite extensive. The study also provides an insight into the possibilities and challenges faced in implementing innovative materials in bridge construction, supporting the improvement of safety and sustainability in road infrastructure.eng
dc.description.abstractEl estudio se realiza empleando la herramienta Parsifal la cual sirve para llevar a cabo una evaluación de la documentación científica y técnica asociada con materiales innovadores en el diseño, construcción y mantenimiento de puentes. El objetivo principal es identificar tendencias y progresos en la implementación de estos materiales a lo largo del ciclo de vida de las estructuras de puentes. Se recopilaron y analizaron artículos de las fuentes académicas principales, destacando la contribución significativa de Scopus en la selección de artículos. Los resultados indican un aumento notorio en la investigación de materiales innovadores a partir de 2018, posiblemente impulsado por avances tecnológicos, demandas de infraestructura más segura y sostenible, y conciencia pública. Los hallazgos se clasifican en tres categorías: diseño, construcción y mantenimiento de puentes, revelando la influencia de materiales como el hormigón de Ultra Alta Resistencia y Polímeros Reforzados con Fibras. Además, se evalúan las características y la viabilidad de estos materiales, destacando su durabilidad, resistencia y eficiencia en la construcción, así como su impacto ambiental. A pesar de que se observa que los costos iniciales son más altos, se evidencia que su disponibilidad y ventajas a largo plazo son bastante amplias.spa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero(a) Civilspa
dc.description.degreetypeMonografíaspa
dc.description.notesPresencialspa
dc.identifier.bibliographicCitationA. Bouhaloufa, K. Zellat, & Kadri, T. (2018). La evaluación probabilística del Flujo de Tráfico y Seguridad de Puentes. Revista de Ingeniería de Construcción. https://doi.org/10.4067/s071850732018000200147spa
dc.identifier.bibliographicCitationAbdelkarim, O. I., ElGawady, M., Gheni, A. A., & Abdulazeez, M. M. (2016, July). Seismic Performance of Innovative Hollow-Core FRP–Concrete–Steel Bridge Columns. ResearchGate; American Society of Civil Engineers.spa
dc.identifier.bibliographicCitationAbebe, S., & Tesfaye Alemu Mohammed. (2023). Bridge structures under progressive collapse: A comprehensive state-of-theart-review. Results in Engineering, 18, 101090–101090. https://doi.org/10.1016/j.rineng.2023.101090spa
dc.identifier.bibliographicCitationAgarwal, P., Pal, P., & Mehta, P. (2023). Finite element analysis of reinforced concrete curved boxgirder bridges. Advances in Bridge Engineering, 4(1). https://doi.org/10.1186/s43251-02300080-7spa
dc.identifier.bibliographicCitationAkira Yabe, Miyamoto, A., & Eugen Brühwiler. (2019). Characteristics of a bridge condition assessment method based on state representation methodology (SRM) and damage detection sensitivity. Journal of Civil Structural Health Monitoring, 9(2), 233–251. https://doi.org/10.1007/s13349-019-00328-9spa
dc.identifier.bibliographicCitationAlessandro Della Camera, Bagnara, A., Larsen, A., Stefano Cammelli, & Piccardo, G. (2023). The effect of central gap and wind screens on the aeroelastic stability of long-span bridge decks: Comparison of numerical analyses and experimental results. Journal of Fluids and Structures, 121, 103923–103923. https://doi.org/10.1016/j.jfluidstructs.2023.103923spa
dc.identifier.bibliographicCitationAl-Rousan, R. Z. (2022). Impact of elevated temperature on the behavior of full-scale concrete bridge deck slabs reinforced with GFRP bars. Structures, 43, 621–634. https://doi.org/10.1016/j.istruc.2022.06.079spa
dc.identifier.bibliographicCitationAnamika Kushwaha, Goswami, L., Mamata Singhvi, & Beom Soo Kim. (2023). Biodegradation of poly(ethylene terephthalate): Mechanistic insights, advances, and future innovative strategies. Chemical Engineering Journal, 457, 141230–141230. https://doi.org/10.1016/j.cej.2022.141230spa
dc.identifier.bibliographicCitationAquino, H. & Yêda Vieira Póvoas. (2019). Detección de delaminaciones en puentes de concreto armado usando Termografía Infrarroja. Revista de Ingeniería de Construcción, 34(1), 55–64. https://doi.org/10.4067/s0718-50732019000100055spa
dc.identifier.bibliographicCitationArdila, J., & Benjumea, J. (2018). Excitación sísmica asíncrona en puentes: patrones de asincronismo, métodos de análisis y tipologías estudiadas. Revista de Ingeniería de Construcción. https://doi.org/10.4067/s0718-50732018000100093spa
dc.identifier.instnameinstname:Universidad Antonio Nariñospa
dc.identifier.reponamereponame:Repositorio Institucional UANspa
dc.identifier.repourlrepourl:https://repositorio.uan.edu.co/spa
dc.identifier.urihttp://repositorio.uan.edu.co/handle/123456789/8883
dc.language.isospaspa
dc.publisherUniversidad Antonio Nariñospa
dc.publisher.campusDuitamaspa
dc.publisher.facultyFacultad de Ingeniería Civilspa
dc.publisher.programIngeniería Civilspa
dc.rightsAcceso abierto
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAttribution-NoDerivatives 4.0 International (CC BY-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nd/4.0/spa
dc.subjectMateriales Innovadoreses_ES
dc.subjectinfraestructura viales_ES
dc.subjectdiseño de puenteses_ES
dc.subject.keywordInnovative Materialses_ES
dc.subject.keywordBridge Constructiones_ES
dc.subject.keywordUltra High-Strength Concretees_ES
dc.titleRevisión Bibliográfica del uso de materiales innovadores en el diseño y construcción de puenteses_ES
dc.typeTrabajo de grado (Pregrado y/o Especialización)spa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceGeneralspa
Files
Original bundle
Now showing 1 - 3 of 3
thumbnail.default.alt
Name:
2023_LeytonMontealegreJenniferCamila.pdf
Size:
1.36 MB
Format:
Adobe Portable Document Format
Description:
thumbnail.default.alt
Name:
2023_LeytonMontealegreJenniferCamila_Acta.pdf
Size:
175.35 KB
Format:
Adobe Portable Document Format
Description:
thumbnail.default.alt
Name:
2023_LeytonMontealegreJenniferCamila_Autorización.pdf
Size:
1.11 MB
Format:
Adobe Portable Document Format
Description: