Aprovechamiento energético térmico en intercambiadores de calor compactos a través de un arreglo de celdas Peltier
Share
Date
2020-11-27
Director(s)
Publisher
Universidad Antonio Nariño
Campus
Program
Degree obtained
Document type
COAR type
http://purl.org/coar/resource_type/c_7a1f
Citation
Bibliographic Managers
Document Viewer
Select a file to preview:
item.page.resume
Propia
Abstract
This research work seeks to determine the viability and applicability of thermoelectric principles as an alternative for the use of thermal energy in compact heat exchangers, this energy is emitted into the environment in the form of heat, altering the natural environment and contributing to global warming, This elements are used as part of refrigeration systems in multiple industrial and domestic machinery such as air conditioners, automobiles, and boilers.
The use of this energy could be determined experimentally through the design and implementation of an array of Peltier cells, devices that allow thermal energy to be converted into electrical energy. For this, a study of different types of exchangers was carried out in order to obtain the criteria to select the most appropriate one for carrying out the research, taking into account the temperature emitted by it. A compact heat exchanger was selected as part of the cooling system of a motor generator.
A record of the amount of heat emitted by the exchanger was made to then design an array of cells that according to the data obtained and taking into account the technical specifications of the exchanger would allow generating a standard current and voltage of 12VDC in order to be able to be used to power an auxiliary system for the machinery under study or another system.
It was necessary to dissipate the heat on the opposite side of the cells in order to maintain a temperature difference that allows the required voltage to be generated, the higher the temperature difference, the greater the generation of both voltage and current. When using Peltier cells as energy transducers, they work as sources of voltage and current, therefore, in order for the current and voltage generated by the device to reach the optimal levels of utility, it was necessary to make an array in a mixed circuit configuration that It consists of placing a group of cells in series and in turn is in parallel with another group of cells in series to increase both the voltage and the current generated.