Evaluación de la unión de un péptido marcador de neuroinflamación con diferentes proteínas blanco y su conjugación con nanopartículas superparamagnéticas
dc.contributor.advisor | Losada Barragán, Mónica | spa |
dc.contributor.advisor | Llamosa Pérez, Daniel | spa |
dc.contributor.author | Medina Castillo, Yehidi Julieth | spa |
dc.creator.cedula | 1030649417 | spa |
dc.date.accessioned | 2021-02-18T18:33:52Z | |
dc.date.available | 2021-02-18T18:33:52Z | |
dc.date.issued | 2020-11-18 | spa |
dc.description | Interna | es_ES |
dc.description.abstract | Neuroinflammation is characterized by presenting alterations in the blood-brain barrier, and activation of glial cells, leading to brain tissue alterations generating a pathology, this has led to the need to improve the magnetic resonance imaging technique that allows understanding the development and progression of alterations of the blood-brain barrier in real time, under neuroinflammatory conditions. As an alternative to this solution, it is proposed to establish the binding of a neuroinflammation marker peptide with its target protein and its conjugation with superparamagnetic nanoparticles. The results show that the magnetic nanoparticles have a spherical shape with a size of 54 ± 10 nm, the chemical composition Fe @ SiO2 and a magnetic hysteresis curve indicating a superparamagnetic behavior; The evaluation of the binding of peptide-88 with its possible receptor protein showed a greater binding between peptide-88 with laminin β1, likewise the binding of peptide-88 with the nanoparticles was studied, demonstrating a greater binding unlike the target. The present study showed that by establishing the functionalization of superparamagnetic nanoparticles conjugated to a neuroinflammation biomarker peptide, they can be used for early diagnosis and real-time evolution of the mechanisms triggered under neuroinflammatory conditions. | eng |
dc.description.abstract | La neuroinflamación es caracterizada por presentar alteraciones en la barrera hematoencefálica, y activación de las células glía, conduciendo a eventos patológicos, esto ha llevado a la necesidad de mejorar la técnica de imagen por resonancia magnética que permitan comprender el desarrollo y progresión de las alteraciones de la barrera hematoencefálica en tiempo real, bajo condiciones neuroinflamatorias. Como una alternativa a esta solución, se propone establecer la unión de un péptido marcador de neuroinflamación con su proteína blanco y su conjugación con nanopartículas superparamagnéticas. Los resultados muestran que las nanopartículas magnéticas presentan una forma esférica con un tamaño 54 ± 10 nm, la composición química Fe@SiO2 y una curva de histéresis magnética indicando un comportamiento superparamagnético; la evaluación de la unión del péptido-88 con su posible proteína receptora mostró una mayor unión entre el peptido-88 con laminina β1, igualmente se estudió la unión del péptido-88 con las nanopartículas demostrando una mayor unión a diferencia del blanco. El presente estudio evidenció que al establecer la funcionalización de nanopartículas superparamagnéticas conjugadas a un péptido biomarcador de neuroinflamación, pueden ser utilizadas para el diagnóstico temprano y evolución en tiempo real de los mecanismos desencadenados bajo condiciones neuroinflamatorias. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Bioquímico(a) | spa |
dc.description.funder | CT-672-2018, código 123377757091 | es_ES |
dc.description.notes | Presencial | spa |
dc.description.sponsorship | UAN Proyectos de ciencia, tecnología, innovación y creación artística | spa |
dc.identifier.bibliographicCitation | Abbott, N. J., Rönnbäck, L., & Hansson, E. (2006). Astrocyte-endothelial interactions at the blood-brain barrier. Nature Reviews Neuroscience, 7(1), 41–53. https://doi.org/10.1038/nrn1824 | spa |
dc.identifier.bibliographicCitation | Ali, A., Zafar, H., Zia, M., Ul Haq, I., Phull, A. R., Ali, J. S., & Hussain, A. (2016). Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnology, Science and Applications, 9, 49–67. https://doi.org/10.2147/NSA.S99986 | spa |
dc.identifier.bibliographicCitation | Alvear, D., Galeas, S., & Debut, A. (2017). Síntesis y Caracterización de Nanopartículas de Magnetita. Revista Politécnica, 39(2), 61–66. https://doi.org/10.33333/rp.v39i2.545 | spa |
dc.identifier.bibliographicCitation | Balistreri, C. R., Carruba, G., Calabrò, M., Campisi, I., Carlo, D. Di, Lio, D., Colonna-Romano, G., Candore, G., & Caruso, C. (2009). CCR5 proinflammatory allele in prostate cancer risk: A pilot study in patients and centenarians from sicily. Annals of the New York Academy of Sciences, 1155, 289–292. https://doi.org/10.1111/j.1749-6632.2008.03691.x | spa |
dc.identifier.bibliographicCitation | Barkhof, F., Calabresi, P. A., Miller, D. H., & Reingold, S. C. (2009). Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nature Reviews Neurology, 5(5), 256–266. https://doi.org/10.1038/nrneurol.2009.41 | spa |
dc.identifier.bibliographicCitation | Berger, C., Hiestand, P., Kindler-Baumann, D., Rudin, M., & Rausch, M. (2006). Analysis of lesion development during acute inflammation and remission in a rat model of experimental autoimmune encephalomyelitis by visualization of macrophage infiltration, demyelination and blood-brain barrier damage. NMR in Biomedicine, 19(1), 101–107. https://doi.org/10.1002/nbm.1007 | spa |
dc.identifier.bibliographicCitation | Berry, C. C. (2005). Possible exploitation of magnetic nanoparticle-cell interaction for biomedical applications. Journal of Materials Chemistry, 15(5), 543–547. https://doi.org/10.1039/b409715g | spa |
dc.identifier.bibliographicCitation | Boiziau, C., Nikolski, M., Mordelet, E., Aussudre, J., Vargas-Sanchez, K., & Petry, K. G. (2018). A Peptide Targeting Inflammatory CNS Lesions in the EAE Rat Model of Multiple Sclerosis. Inflammation, 41(3), 932–947. https://doi.org/10.1007/s10753-018-0748-0 | spa |
dc.identifier.bibliographicCitation | by Dove Press, published. (2014). Oh NPark J. 51–63. http://dx.doi.org/10.2147/IJN.S26592 | spa |
dc.identifier.bibliographicCitation | Chen, Fang, Hableel, G., Zhao, E. R., & Jokerst, J. V. (2018). Multifunctional nanomedicine with silica: Role of silica in nanoparticles for theranostic, imaging, and drug monitoring. Journal of Colloid and Interface Science, 521, 261–279. https://doi.org/10.1016/j.jcis.2018.02.053 | spa |
dc.identifier.bibliographicCitation | Chen, Feng, Bu, W., Chen, Y., Fan, Y., He, Q., Zhu, M., Liu, X., Zhou, L., Zhang, S., Peng, W., & Shi, J. (2009). A Sub-50-nm Monosized Superparamagnetic Fe 3 O 4 @SiO 2 T 2 -Weighted MRI Contrast Agent: Highly Reproducible Synthesis of Uniform Single-Loaded Core-Shell Nanostructures. Chemistry - An Asian Journal, 4(12), 1809–1816. https://doi.org/10.1002/asia.200900276 | spa |
dc.identifier.bibliographicCitation | Zhang, L., Shao, H. ping, Zheng, H., Lin, T., & Guo, Z. meng. (2016). Synthesis and characterization of Fe3O4@SiO2 magnetic composite nanoparticles by a one-pot process. International Journal of Minerals, Metallurgy and Materials, 23(9), 1112–1118. https://doi.org/10.1007/s12613-016-1329-6 | spa |
dc.identifier.bibliographicCitation | Zhang, S., Li, J., Lykotrafitis, G., Bao, G., & Suresh, S. (2009). Size-dependent endocytosis of nanoparticles. Advanced Materials, 21(4), 419–424. https://doi.org/10.1002/adma.200801393 | spa |
dc.identifier.bibliographicCitation | Zinnhardt, B., Wiesmann, M., Honold, L., Barca, C., Schäfers, M., Kiliaan, A. J., & Jacobs, A. H. (2018). In vivo imaging biomarkers of neuroinflammation in the development and assessment of stroke therapies - towards clinical translation. Theranostics, 8(10), 2603–2620. https://doi.org/10.7150/thno.24128 | spa |
dc.identifier.bibliographicCitation | Zlokovic, B. V. (2008). Review The Blood-Brain Barrier in Health and Chronic Neurodegenerative Disorders. 2, 178–201. https://doi.org/10.1016/j.neuron.2008.01.003 | spa |
dc.identifier.bibliographicCitation | Costa, C., Brandão, F., Bessa, M. J., Costa, S., Valdiglesias, V., Kiliç, G., Fernández-Bertólez, N., Quaresma, P., Pereira, E., Pásaro, E., Laffon, B., & Teixeira, J. P. (2016). In vitro cytotoxicity of superparamagnetic iron oxide nanoparticles on neuronal and glial cells. Evaluation of nanoparticle interference with viability tests. Journal of Applied Toxicology, 36(3), 361–372. https://doi.org/10.1002/jat.3213 | spa |
dc.identifier.bibliographicCitation | Daneman, R., & Prat, A. (2015). The Blood–Brain Barrier. Cold Spring Harbor Perspectives in Biology, 7(1), a020412. https://doi.org/10.1101/cshperspect.a020412 | spa |
dc.identifier.bibliographicCitation | Deutscher, S. L. (2010). Phage display in molecular imaging and diagnosis of cancer. Chemical Reviews, 110(5), 3196–3211. https://doi.org/10.1021/cr900317f | spa |
dc.identifier.bibliographicCitation | Di Russo, J., Luik, A., Yousif, L., Budny, S., Oberleithner, H., Hofschröer, V., Klingauf, J., Bavel, E., Bakker, E. N., Hellstrand, P., Bhattachariya, A., Albinsson, S., Pincet, F., Hallmann, R., & Sorokin, L. M. (2017). Endothelial basement membrane laminin 511 is essential for shear stress response. The EMBO Journal, 36(2), 183–201. https://doi.org/10.15252/embj.201694756 | spa |
dc.identifier.bibliographicCitation | Di Virgilio, F., Ceruti, S., Bramanti, P., & Abbracchio, M. P. (2009). Purinergic signalling in inflammation of the central nervous system. Trends in Neurosciences, 32(2), 79–87. https://doi.org/10.1016/j.tins.2008.11.003 | spa |
dc.identifier.bibliographicCitation | Dijkhuizen, R. M. (2011). Advances in MRI-Based Detection of Cerebrovascular Changes after Experimental Traumatic Brain Injury. Translational Stroke Research, 2(4), 524–532. https://doi.org/10.1007/s12975-011-0130-0 | spa |
dc.identifier.bibliographicCitation | Dijkhuizen, R. M., & Nicolay, K. (2003). Magnetic Resonance Imaging in Experimental Models of Brain Disorders. Journal of Cerebral Blood Flow and Metabolism, 23(12), 1383–1402. https://doi.org/10.1097/01.WCB.0000100341.78607.EB | spa |
dc.identifier.bibliographicCitation | Ding, H. L., Zhang, Y. X., Wang, S., Xu, J. M., Xu, S. C., & Li, G. H. (2012). Fe 3 O 4 @SiO 2 Core/Shell Nanoparticles: The Silica Coating Regulations with a Single Core for Different Core Sizes and Shell Thicknesses. Chemistry of Materials, 24(23), 4572–4580. https://doi.org/10.1021/cm302828d | spa |
dc.identifier.bibliographicCitation | Domogatskaya, A., Rodin, S., & Tryggvason, K. (2012). Functional diversity of laminins. Annual Review of Cell and Developmental Biology, 28, 523–553. https://doi.org/10.1146/annurev-cellbio-101011-155750 | spa |
dc.identifier.bibliographicCitation | Dousset, V., Brochet, B., Deloire, M. S. A., Lagoarde, L., Barroso, B., Caille, J. M., & Petry, K. G. (2006). MR imaging of relapsing multiple sclerosis patients using ultra-small-particle iron oxide and compared with gadolinium. American Journal of Neuroradiology, 27(5), 1000–1005. | spa |
dc.identifier.bibliographicCitation | Dresco, P. A., Zaitsev, V. S., Gambino, R. J., & Chu, B. (1999). Preparation and properties of magnetite and polymer magnetite nanoparticles. Langmuir, 15(6), 1945–1951. https://doi.org/10.1021/la980971g | spa |
dc.identifier.bibliographicCitation | Engelhardt, B., & Ransohoff, R. M. (2012). Capture, crawl, cross: The T cell code to breach the blood-brain barriers. Trends in Immunology, 33(12), 579–589. https://doi.org/10.1016/j.it.2012.07.004 | spa |
dc.identifier.bibliographicCitation | Estelrich, J., Escribano, E., Queralt, J., & Busquets, M. A. (2015). Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. International Journal of Molecular Sciences, 16(4), 8070–8101. https://doi.org/10.3390/ijms16048070 | spa |
dc.identifier.bibliographicCitation | Estrada-rojo, F., Escoto, S. I., & Navarro, L. (2018). Neuroin amación : el ying-yang de la neuroinmunología. 44–53. http://www.scielo.org.mx/pdf/facmed/v61n5/2448-4865-facmed-61-05-44.pdf | spa |
dc.identifier.bibliographicCitation | Filippi, M., Preziosa, P., & Rocca, M. A. (2014). Magnetic resonance outcome measures in multiple sclerosis trials: Time to rethink? Current Opinion in Neurology, 27(3), 290–299. https://doi.org/10.1097/WCO.0000000000000095 | spa |
dc.identifier.bibliographicCitation | Floris, S., Blezer, E. L. A., Schreibelt, G., Do, E., Dijkstra, K. N. C. D., & Vries, H. E. De. (2004). Blood ± brain barrier permeability and monocyte in ® ltration in experimental allergic encephalomyelitis A quantitative MRI study. 127(3), 616–627. https://doi.org/10.1093/brain/awh068 | spa |
dc.identifier.bibliographicCitation | Garre Olmo, J. (2018). Epidemiología de la enfermedad de Alzheimer y otras demencias. Revista de Neurología, 66(11), 377. https://doi.org/10.33588/rn.6611.2017519 | spa |
dc.identifier.bibliographicCitation | Gauberti, M., Montagne, A., Marcos-Contreras, O. A., Le Béhot, A., Maubert, E., & Vivien, D. (2013). Ultra-Sensitive Molecular MRI of Vascular Cell Adhesion Molecule-1 Reveals a Dynamic Inflammatory Penumbra After Strokes. Stroke, 44(7), 1988–1996. https://doi.org/10.1161/STROKEAHA.111.000544 | spa |
dc.identifier.bibliographicCitation | Gendelman, H. E. (2002). Neural immunity: Friend or foe? Journal of NeuroVirology, 8(6), 474–479. https://doi.org/10.1080/13550280290168631 | spa |
dc.identifier.bibliographicCitation | Ghosh, D., Upmanyu, N., Shukla, T., & Shrivastava, T. P. (2019). Cell and organ drug targeting. In Nanomaterials for Drug Delivery and Therapy. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816505-8.00015-1 | spa |
dc.identifier.bibliographicCitation | Gupta, A. K., & Wells, S. (2004). Surface-Modified Superparamagnetic Nanoparticles for Drug Delivery: Preparation, Characterization, and Cytotoxicity Studies. IEEE Transactions on Nanobioscience, 3(1), 66–73. https://doi.org/10.1109/TNB.2003.820277 | spa |
dc.identifier.bibliographicCitation | Han, Q., Li, B., Feng, H., Xiao, Z., Chen, B., Zhao, Y., Huang, J., & Dai, J. (2011). The promotion of cerebral ischemia recovery in rats by laminin-binding BDNF. Biomaterials, 32(22), 5077–5085. https://doi.org/10.1016/j.biomaterials.2011.03.072 | spa |
dc.identifier.bibliographicCitation | He, J., Huang, M., Wang, D., Zhang, Z., & Li, G. (2014). Magnetic separation techniques in sample preparation for biological analysis: A review. Journal of Pharmaceutical and Biomedical Analysis, 101, 84–101. https://doi.org/10.1016/j.jpba.2014.04.017 | spa |
dc.identifier.bibliographicCitation | Heneka, M. T., Carson, M. J., Khoury, J. El, Landreth, G. E., Brosseron, F., Feinstein, D. L., Jacobs, A. H., Wyss-Coray, T., Vitorica, J., Ransohoff, R. M., Herrup, K., Frautschy, S. A., Finsen, B., Brown, G. C., Verkhratsky, A., Yamanaka, K., Koistinaho, J., Latz, E., Halle, A., … Heneka, M. (2015). Neuroinflammation in Alzheimer’s Disease HHS Public Access. Lancet Neurol, 14(4), 388–405. https://doi.org/10.1016/S1474-4422(15)70016-5 | spa |
dc.identifier.bibliographicCitation | Hilger, I., Frühauf, S., Linß, W., Hiergeist, R., Andrä, W., Hergt, R., & Kaiser, W. A. (2003). Cytotoxicity of selected magnetic fluids on human adenocarcinoma cells. Journal of Magnetism and Magnetic Materials, 261(1–2), 7–12. https://doi.org/10.1016/S0304-8853(01)00258-X | spa |
dc.identifier.bibliographicCitation | Hirsch, E. C., Vyas, S., St´, S., & Hunot, S. (2012). Parkinsonism and Related Disorders 18S1 (2012) S210-S212. 1, 210–212. https://doi.org/10.1016/S1353-8020(11)70065-7 | spa |
dc.identifier.bibliographicCitation | Husemann, J., Loike, J. D., Anankov, R., Febbraio, M., & Silverstein, S. C. (2002). Scavenger receptors in neurobiology and neuropathology: Their role on microglia and other cells of the nervous system. Glia, 40(2), 195–205. https://doi.org/10.1002/glia.10148 | spa |
dc.identifier.bibliographicCitation | Issa, B., & M. Obaidat, I. (2019). Magnetic Nanoparticles as MRI Contrast Agents. Magnetic Resonance Imaging, 1–16. https://doi.org/10.5772/intechopen.84649 | spa |
dc.identifier.bibliographicCitation | Iv, M., Telischak, N., Feng, D., Holdsworth, S. J., Yeom, K. W., & Daldrup-Link, H. E. (2015). Clinical applications of iron oxide nanoparticles for magnetic resonance imaging of brain tumors. Nanomedicine, 10(6), 993–1008. https://doi.org/10.2217/nnm.14.203 | spa |
dc.identifier.bibliographicCitation | Jeng, H. A., & Swanson, J. (2006). Toxicity of metal oxide nanoparticles in mammalian cells. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 41(12), 2699–2711. https://doi.org/10.1080/10934520600966177 | spa |
dc.identifier.bibliographicCitation | Ji, K., & Tsirka, S. E. (2012a). Inflammation modulates expression of laminin in the central nervous system following ischemic injury. Journal of Neuroinflammation, 9, 1–12. https://doi.org/10.1186/1742-2094-9-159 | spa |
dc.identifier.bibliographicCitation | Ji, K., & Tsirka, S. E. (2012b). Inflammation modulates expression of laminin in the central nervous system following ischemic injury. Journal of Neuroinflammation, 9(1), 610. https://doi.org/10.1186/1742-2094-9-159 | spa |
dc.identifier.bibliographicCitation | Jo, D. H., Kim, J. H., Lee, T. G., & Kim, J. H. (2015). Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine: Nanotechnology, Biology, and Medicine, 11(7), 1603–1611. https://doi.org/10.1016/j.nano.2015.04.015 | spa |
dc.identifier.bibliographicCitation | Kandelaki, E., Kavlashvili, N., Kherkheulidze, M., & Chkhaidze, I. (2015). Prevalence of Atopic Dermatitis Symptoms in Children With Developmental and Behavioral Problems. Georgian Medical News, 6(243), 29–33. | spa |
dc.identifier.bibliographicCitation | Karina, J., & Sanchez, V. (2013). IN VIVO PEPTIDE BIOMARKER SCREENING FOR MOLECULAR IMAGING IN EAE NEUROINFLAMMATION. the Bordeaux Segalen University. | spa |
dc.identifier.bibliographicCitation | Karlik, S. J., Roscoe, W. A., Patinote, C., & Contino-pépin, C. (2012). Targeting Vascular Changes in Lesions in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. 7–14. | spa |
dc.identifier.bibliographicCitation | Keenan, C. R., Goth-Goldstein, R., Lucas, D., & Sedlak, D. L. (2009). Oxidative stress induced by zero-valent iron nanoparticles and Fe(II) in human bronchial epithelial cells. Environmental Science and Technology, 43(12), 4555–4560. https://doi.org/10.1021/es9006383 | spa |
dc.identifier.bibliographicCitation | Kharisov, B. I., Rasika Dias, H. V., Kharissova, O. V., Manuel Jiménez-Pérez, V., Olvera Pérez, B., & Muñoz Flores, B. (2012). Iron-containing nanomaterials: synthesis, properties, and environmental applications. RSC Advances, 2(25), 9325. https://doi.org/10.1039/c2ra20812a | spa |
dc.identifier.bibliographicCitation | Kiliç, G., Fernández-Bertólez, N., Costa, C., Brandão, F., Teixeira, J. P., Pásaro, E., Laffon, B., & Valdiglesias, V. (2016). The Application, Neurotoxicity, and Related Mechanism of Iron Oxide Nanoparticles. In Neurotoxicity of Nanomaterials and Nanomedicine. Elsevier Inc. https://doi.org/10.1016/B978-0-12-804598-5.00006-4 | spa |
dc.identifier.bibliographicCitation | Koffie, R. M., Farrar, C. T., Saidi, L. J., William, C. M., Hyman, B. T., & Spires-Jones, T. L. (2011). Nanoparticles enhance brain delivery of blood-brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging. Proceedings of the National Academy of Sciences of the United States of America, 108(46), 18837–18842. https://doi.org/10.1073/pnas.1111405108 | spa |
dc.identifier.bibliographicCitation | Krishnan, K. M. (2010). Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy. IEEE Transactions on Magnetics, 46(7), 2523–2558. https://doi.org/10.1109/TMAG.2010.2046907 | spa |
dc.identifier.bibliographicCitation | Lewczuk, P., Mroczko, B., Fagan, A., & Kornhuber, J. (2015). Biomarkers of Alzheimer’s disease and mild cognitive impairment: A current perspective. Advances in Medical Sciences, 60(1), 76–82. https://doi.org/10.1016/j.advms.2014.11.002 | spa |
dc.identifier.bibliographicCitation | Li, Q., Kartikowati, C. W., Horie, S., Ogi, T., Iwaki, T., & Okuyama, K. (2017). Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Scientific Reports, 7(1), 9894. https://doi.org/10.1038/s41598-017-09897-5 | spa |
dc.identifier.bibliographicCitation | Lombardo, S. M., Schneider, M., Türeli, A. E., & Türeli, N. G. (2020). Key for crossing the BBB with nanoparticles: The rational design. Beilstein Journal of Nanotechnology, 11(866), 866–883. https://doi.org/10.3762/BJNANO.11.72 | spa |
dc.identifier.bibliographicCitation | Lourenço, I. M., Pieretti, J. C., Nascimento, M. H. M., Lombello, C. B., & Seabra, A. B. (2019). Eco-friendly synthesis of iron nanoparticles by green tea extract and cytotoxicity effects on tumoral and non-tumoral cell lines. Energy, Ecology and Environment, 4(6), 261–270. https://doi.org/10.1007/s40974-019-00134-5 | spa |
dc.identifier.bibliographicCitation | Lucchinetti, C. F. (2008). Multiple sclerosis and the spectrum of CNS inflammatory demyelinating diseases. Seminars in Neurology, 28(1), 3–6. https://doi.org/10.1055/s-2007-1019123 | spa |
dc.identifier.bibliographicCitation | Luo, B., Song, X. J., Zhang, F., Xia, A., Yang, W. L., Hu, J. H., & Wang, C. C. (2010). Multi-functional thermosensitive composite microspheres with high magnetic susceptibility based on magnetite colloidal nanoparticle clusters. In Langmuir (Vol. 26, Issue 3, pp. 1674–1679). https://doi.org/10.1021/la902635k | spa |
dc.identifier.bibliographicCitation | Mahmoudi, M., Simchi, A., & Imani, M. (2009). Cytotoxicity of uncoated and polyvinyl alcohol coated superparamagnetic iron oxide nanoparticles. Journal of Physical Chemistry C, 113(22), 9573–9580. https://doi.org/10.1021/jp9001516 | spa |
dc.identifier.bibliographicCitation | Maldonado-Camargo, L., Unni, M., & Rinaldi, C. (2017). Magnetic Characterization of Iron Oxide Nanoparticles for Biomedical Applications (pp. 47–71). https://doi.org/10.1007/978-1-4939-6840-4_4 | spa |
dc.identifier.bibliographicCitation | Mathieu, Coppel, Respaud, Nguyen, Boutry, Laurent, Stanicki, Henoumont, Novio, Lorenzo, Montpeyó, & Amiens. (2019). Silica Coated Iron/Iron Oxide Nanoparticles as a Nano-Platform for T2 Weighted Magnetic Resonance Imaging. Molecules, 24(24), 4629. https://doi.org/10.3390/molecules24244629 | spa |
dc.identifier.bibliographicCitation | McAteer, M. A., Sibson, N. R., von zur Muhlen, C., Schneider, J. E., Lowe, A. S., Warrick, N., Channon, K. M., Anthony, D. C., & Choudhury, R. P. (2007). In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide. Nature Medicine, 13(10), 1253–1258. https://doi.org/10.1038/nm1631 | spa |
dc.identifier.bibliographicCitation | McConnell, H. L., Schwartz, D. L., Richardson, B. E., Woltjer, R. L., Muldoon, L. L., & Neuwelt, E. A. (2016). Ferumoxytol nanoparticle uptake in brain during acute neuroinflammation is cell-specific. Nanomedicine: Nanotechnology, Biology, and Medicine, 12(6), 1535–1542. https://doi.org/10.1016/j.nano.2016.03.009 | spa |
dc.identifier.bibliographicCitation | McQualter, J. L., & Bernard, C. C. A. (2007). Multiple sclerosis: A battle between destruction and repair. Journal of Neurochemistry, 100(2), 295–306. https://doi.org/10.1111/j.1471-4159.2006.04232.x | spa |
dc.identifier.bibliographicCitation | Menezes, M. J., McClenahan, F. K., Leiton, C. V., Aranmolate, A., Shan, X., & Colognato, H. (2014). The Extracellular Matrix Protein Laminin 2 Regulates the Maturation and Function of the Blood-Brain Barrier. Journal of Neuroscience, 34(46), 15260–15280. https://doi.org/10.1523/JNEUROSCI.3678-13.2014 | spa |
dc.identifier.bibliographicCitation | Millward, J. M., Schnorr, J., Taupitz, M., Wagner, S., Wuerfel, J. T., & Infante-Duarte, C. (2013). Iron oxide magnetic nanoparticles highlight early involvement of the choroid plexus in central nervous system inflammation. ASN Neuro, 5(2), 89–98. https://doi.org/10.1042/AN20120081 | spa |
dc.identifier.bibliographicCitation | Miner, J. H., Li, C., Mudd, J. L., Go, G., & Sutherland, A. E. (2004). Compositional and structural requirements for laminin and basement membranes during mouse embryo implantation and gastrulation. Development, 131(10), 2247–2256. https://doi.org/10.1242/dev.01112 | spa |
dc.identifier.bibliographicCitation | Mirzaei, S., Hadadi, Z., Attar, F., Mousavi, S. E., Zargar, S. S., Tajik, A., Saboury, A. A., Rezayat, S. M., & Falahati, M. (2018). ROS-mediated heme degradation and cytotoxicity induced by iron nanoparticles: hemoglobin and lymphocyte cells as targets. Journal of Biomolecular Structure and Dynamics, 36(16), 4235–4245. https://doi.org/10.1080/07391102.2017.1411832 | spa |
dc.identifier.bibliographicCitation | Moghimi, S. M., Hunter, A. C., & Murray, J. C. (2001). Long-Circulating and Target-Specific Nanoparticles : Theory to Practice. 53(2), 283–318. | spa |
dc.identifier.bibliographicCitation | Moura, M. De, & Houten, B. Van. (2010). Review Article. Environmental and Molecular Mutagenesis, 405(April), 391–405. https://doi.org/10.1002/em | spa |
dc.identifier.bibliographicCitation | Naegele, M., & Martin, R. (2014). The good and the bad of neuroinflammation in multiple sclerosis. In Handbook of Clinical Neurology (1st ed., Vol. 122, Issue 0). Elsevier B.V. https://doi.org/10.1016/B978-0-444-52001-2.00003-0 | spa |
dc.identifier.bibliographicCitation | Neuberger, T., Scho, B., Hofmann, M., & Rechenberg, B. Von. (2005). Superparamagnetic nanoparticles for biomedical applications : Possibilities and limitations of a new drug delivery system. 293, 483–496. https://doi.org/10.1016/j.jmmm.2005.01.064 | spa |
dc.identifier.bibliographicCitation | Nirwane, A., & Yao, Y. (2019). Laminins and their receptors in the CNS. Biological Reviews, 94(1), 283–306. https://doi.org/10.1111/brv.12454 | spa |
dc.identifier.bibliographicCitation | Patil, R. M., Thorat, N. D., Shete, P. B., & Bedge, P. A. (2018). Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles. Biochemistry and Biophysics Reports, 13(December 2017), 63–72. https://doi.org/10.1016/j.bbrep.2017.12.002 | spa |
dc.identifier.bibliographicCitation | Petry, K. G., Boiziau, C., Dousset, V., & Brochet, B. (2007). Magnetic Resonance Imaging of Human Brain Macrophage Infiltration. Neurotherapeutics, 4(3), 434–442. https://doi.org/10.1016/j.nurt.2007.05.005 | spa |
dc.identifier.bibliographicCitation | Petry, K., VARGAS-SANCHEZ, K., & VEKRIS, A. (2016). DNA Subtraction of In Vivo Selected Phage Repertoires for Efficient Peptide Pathology Biomarker Identification in Neuroinflammation Multiple Sclerosis Model. Biomarker Insights, 19.https://doi.org/10.4137/BMI.S32188 | spa |
dc.identifier.bibliographicCitation | Quenault, A., Martinez de Lizarrondo, S., Etard, O., Gauberti, M., Orset, C., Haelewyn, B., Segal, H. C., Rothwell, P. M., Vivien, D., Touzé, E., & Ali, C. (2017). Molecular magnetic resonance imaging discloses endothelial activation after transient ischaemic attack. Brain : A Journal of Neurology, 140(1), 146–157. https://doi.org/10.1093/brain/aww260 | spa |
dc.identifier.bibliographicCitation | Ramge, P., Petrov, V., Hamm, S., Gelperina, S. E., Engelhardt, B., Alyautdin, R., Von, H., & Begley, D. J. (2003). Direct Evidence that Poly ( Butylcyanoacrylate ) Nanoparticles Deliver Drugs to the CNS via Specific Mechanisms Requiring Prior Binding of Drug to the Nanoparticles. Pharmaceutical Research, 20(3), 409–416. | spa |
dc.identifier.bibliographicCitation | Roco, M. C. (2011). Erratum to: The long view of nanotechnology development: The National Nanotechnology Initiative at 10 years (Journal of Nanoparticle Research (2011) 13, (427-445) DOI: 10.1007/s11051-010-0192-z). Journal of Nanoparticle Research, 13(3), 1335. https://doi.org/10.1007/s11051-011-0323-1 | spa |
dc.identifier.bibliographicCitation | Rojas, H. A., Martínez, J. J., & Vargas, A. Y. (2014). Selección de soportes magnéticos para la inmovilización de Ureasa Magnetic supports selection for Urease inmobilization. Ingeniería y Competitividad, 296(2), 289–296. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-30332014000200026 | spa |
dc.identifier.bibliographicCitation | Schéele, S., Nyström, A., Durbeej, M., Talts, J. F., Ekblom, M., & Ekblom, P. (2007). Laminin isoforms in development and disease. Journal of Molecular Medicine, 85(8), 825–836. https://doi.org/10.1007/s00109-007-0182-5 | spa |
dc.identifier.bibliographicCitation | Sharifi, S., Seyednejad, H., Laurent, S., Atyabi, F., Saei, A. A., & Mahmoudi, M. (2015). Superparamagnetic iron oxide nanoparticles for in vivo molecular and cellular imaging. Contrast Media and Molecular Imaging, 10(5), 329–355. https://doi.org/10.1002/cmmi.1638 | spa |
dc.identifier.bibliographicCitation | Sicotte, N. L. (2011). Neuroimaging in Multiple Sclerosis : Neurotherapeutic Implications. 8(January), 54–62. https://doi.org/10.1007/s13311-010-0008-y | spa |
dc.identifier.bibliographicCitation | Song, J., Zhang, X., Buscher, K., Wang, Y., Wang, H., Di Russo, J., Li, L., Lütke-Enking, S., Zarbock, A., Stadtmann, A., Striewski, P., Wirth, B., Kuzmanov, I., Wiendl, H., Schulte, D., Vestweber, D., & Sorokin, L. (2017). Endothelial Basement Membrane Laminin 511 Contributes to Endothelial Junctional Tightness and Thereby Inhibits Leukocyte Transmigration. Cell Reports, 18(5), 1256–1269. https://doi.org/10.1016/j.celrep.2016.12.092 | spa |
dc.identifier.bibliographicCitation | Stoll, G., & Bendszus, M. (2009). Imaging of inflammation in the peripheral and central nervous system by magnetic resonance imaging. Neuroscience, 158(3), 1151–1160. https://doi.org/10.1016/j.neuroscience.2008.06.045 | spa |
dc.identifier.bibliographicCitation | Van Rooy, I., Cakir-Tascioglu, S., Couraud, P. O., Romero, I. A., Weksler, B., Storm, G., Hennink, W. E., Schiffelers, R. M., & Mastrobattista, E. (2010). Identification of peptide ligands for targeting to the blood-brain barrier. Pharmaceutical Research, 27(4), 673–682. https://doi.org/10.1007/s11095-010-0053-6 | spa |
dc.identifier.bibliographicCitation | Van Rooy, I., Cakir-Tascioglu, S., Hennink, W. E., Storm, G., Schiffelers, R. M., & Mastrobattista, E. (2011). In vivo methods to study uptake of nanoparticles into the brain. Pharmaceutical Research, 28(3), 456–471. https://doi.org/10.1007/s11095-010-0291-7 | spa |
dc.identifier.bibliographicCitation | Varatharaj, A., & Galea, I. (2017). The blood-brain barrier in systemic inflammation. Brain, Behavior, and Immunity, 60, 1–12. https://doi.org/10.1016/j.bbi.2016.03.010 | spa |
dc.identifier.bibliographicCitation | Vellinga, M. M., Oude Engberink, R. D., Seewann, A., Pouwels, P. J. W., Wattjes, M. P., Van Der Pol, S. M. A., Pering, C., Polman, C. H., De Vries, H. E., Geurts, J. J. G., & Barkhof, F. (2008). Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement. Brain, 131(3), 800–807. https://doi.org/10.1093/brain/awn009 | spa |
dc.identifier.bibliographicCitation | Wahajuddin, & Arora. (2012). Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. International Journal of Nanomedicine, 3445. https://doi.org/10.2147/IJN.S30320 | spa |
dc.identifier.bibliographicCitation | Weissleder, R., Elizondo, G., Wittenberg, J., Rabito, C. A., Bengele, H. H., & Josephson, L. (1990). Ultrasmall superparamagnetic iron oxide: Characterization of a new class of contrast agents for MR imaging. Radiology, 175(2), 489–493. https://doi.org/10.1148/radiology.175.2.2326474 | spa |
dc.identifier.bibliographicCitation | Willner, I., & Willner, B. (2002). Functional nanoparticle architectures for sensoric, optoelectronic, and bioelectronic applications. Pure and Applied Chemistry, 74(9), 1773–1783. | spa |
dc.identifier.bibliographicCitation | Wong, H. L., Wu, X. Y., & Bendayan, R. (2012a). Nanotechnological advances for the delivery of CNS therapeutics. Advanced Drug Delivery Reviews, 64(7), 686–700. https://doi.org/10.1016/j.addr.2011.10.007 | spa |
dc.identifier.bibliographicCitation | Wong, H. L., Wu, X. Y., & Bendayan, R. (2012b). Nanotechnological advances for the delivery of CNS therapeutics. In Advanced Drug Delivery Reviews (Vol. 64, Issue 7, pp. 686–700). https://doi.org/10.1016/j.addr.2011.10.007 | spa |
dc.identifier.bibliographicCitation | Xiao, Y. (2019). Superparamagnetic nanoparticles for biomedical applications. https://doi.org/10.1039/c9tb01955c | spa |
dc.identifier.bibliographicCitation | Yi, P., Chen, G., Zhang, H., Tian, F., Tan, B., Dai, J., Wang, Q., & Deng, Z. (2013). Magnetic resonance imaging of Fe3O4@SiO2-labeled human mesenchymal stem cells in mice at 11.7 T. Biomaterials, 34(12), 3010–3019. https://doi.org/10.1016/j.biomaterials.2013.01.022 | spa |
dc.identifier.bibliographicCitation | Zaharchuk, G. (2007). Theoretical basis of hemodynamic MR imaging techniques to measure cerebral blood volume, cerebral blood flow, and permeability. American Journal of Neuroradiology, 28(10), 1850–1858. https://doi.org/10.3174/ajnr.A0831 | spa |
dc.identifier.instname | instname:Universidad Antonio Nariño | spa |
dc.identifier.reponame | reponame:Repositorio Institucional UAN | spa |
dc.identifier.repourl | repourl:https://repositorio.uan.edu.co/ | spa |
dc.identifier.uri | http://repositorio.uan.edu.co/handle/123456789/1494 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Antonio Nariño | spa |
dc.publisher.campus | Bogotá - Circunvalar | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.program | Bioquímica | spa |
dc.rights | Acceso abierto | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.rights.license | Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject | Neuroinflamación, barrera hematoencefálica, nanopartículas superparamagnéticas, péptido biomarcador, proteínas blanco, cultivos in vitro. | es_ES |
dc.subject.keyword | Neuroinflammation, blood-brain barrier, superparamagnetic nanoparticles, biomarker peptide, target proteins, in vitro cultures. | es_ES |
dc.title | Evaluación de la unión de un péptido marcador de neuroinflamación con diferentes proteínas blanco y su conjugación con nanopartículas superparamagnéticas | es_ES |
dc.type | Trabajo de grado (Pregrado y/o Especialización) | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
Files
Original bundle
1 - 2 of 2
- Name:
- 2020YehidiJuliethMedinaCastillo.pdf
- Size:
- 1.2 MB
- Format:
- Adobe Portable Document Format
- Description:
- Trabajo de grado
- Name:
- 2020AutorizaciondeAutores.pdf
- Size:
- 275.7 KB
- Format:
- Adobe Portable Document Format
- Description:
- Formato de autorización de autores
License bundle
1 - 1 of 1
- Name:
- license.txt
- Size:
- 2.65 KB
- Format:
- Item-specific license agreed upon to submission
- Description: