Aproximación a la remediación de efluentes industriales provenientes de sector curtiembres en Bogotá a través de una solución nanotecnológica
dc.contributor.advisor | Rincón Ortiz, Rolando Javier | spa |
dc.contributor.author | Castiblanco Ramirez, Diego Andres | spa |
dc.creator.cedula | 1013663649 | spa |
dc.creator.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001665259 | spa |
dc.date.accessioned | 2021-02-18T17:57:14Z | |
dc.date.available | 2021-02-18T17:57:14Z | |
dc.date.issued | 2020-11-19 | spa |
dc.description | Propia | es_ES |
dc.description.abstract | The leather tanning sector is one of the most representative industrial activities in the Colombian economy, with a share of 2.17% in the manufacturing GDP, mostly grouped into SMEs through the export of wet-blue type leather generating revenue of $ 70 million a year. However, an undue exploitation of the activity, as well as manufacturing practices that are not very aware of the environmental impact generated mainly by hexavalent chromium, generates concern both for the environmental effects and for the harmful effects on the health of the population of Bogotaná. The present article establishes through a literature review the conventional and future treatments for the removal of heavy metals, taking hexavalent chromium as a model, proposing a nanomaterial that solves the problem in wastewater. | eng |
dc.description.abstract | El sector de curtido de pieles es una de las actividades industriales más representativas en la economía colombiana, con una participación del 2,17% en el PIB manufacturero, agrupados en su mayoría en PYMES por medio de la exportación del cuero tipo wet-blue generando ingresos de 70 millones de dólares al año. Sin embargo, una explotación indebida de la actividad, así como prácticas manufactureras poco conscientes del impacto ambiental generado principalmente por el Cromo hexavalente, genera una preocupación tanto a los efectos ambientales como a los efectos nocivos para la salud de la población Bogotaná. El presente artículo establece mediante una revisión de literatura los tratamientos convencionales y futuros para la remoción de metales pesados tomando como modelo el cromo hexavalente, proponiendo un nanomaterial que solvente la problemática en las aguas residuales. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Bioquímico(a) | spa |
dc.description.notes | Presencial | spa |
dc.description.sponsorship | Otro | spa |
dc.identifier.bibliographicCitation | AFIRM GROUP. (2019). Documento informativo sobre sustancias químicas: Cromo VI. https://echa.europa.eu/substances-restricted-under- | spa |
dc.identifier.bibliographicCitation | Ahamed, M. I. N., Rajeshkumar, S., Ragul, V., Anand, S., & Kaviyarasu, K. (2018). Chromium remediation and toxicity assessment of nano zerovalent iron against contaminated lake water sample (Puliyanthangal Lake, Tamilnadu, India). South African Journal of Chemical Engineering, 25, 128–132. https://doi.org/10.1016/j.sajce.2018.04.004 | spa |
dc.identifier.bibliographicCitation | Alcaldía de Bogotá. (2015). Guía de producción más limpia para el sector curtiembres de Bogotá Enfoque en vertimientos y residuos. http://www.ambientebogota.gov.co/web/sda/search?p_auth=cpOG8bqA&p_p_auth=y3HWCdzt&p_p_id=20&p_p_lifecycle=1&p_p_state=exclusive&p_p_mode=view&_20_struts_action=%2Fdocument_library%2Fget_file&_20_groupId=24732&_20_folderId=3987253&_20_name=21215 | spa |
dc.identifier.bibliographicCitation | Almeida, J. C., Cardoso, C. E. D., Tavares, D. S., Freitas, R., Trindade, T., Vale, C., & Pereira, E. (2019). Chromium removal from contaminated waters using nanomaterials – A review. TrAC - Trends in Analytical Chemistry, 118, 277–291. https://doi.org/10.1016/j.trac.2019.05.005 | spa |
dc.identifier.bibliographicCitation | Anastopoulos, I., Anagnostopoulos, V. A., Bhatnagar, A., Mitropoulos, A. C., & Kyzas, G. Z. (2017). A review for chromium removal by carbon nanotubes. Chemistry and Ecology, 33(6), 572–588. https://doi.org/10.1080/02757540.2017.1328503 | spa |
dc.identifier.bibliographicCitation | Anjum, M., Miandad, R., Waqas, M., Gehany, F., & Barakat, M. A. (2019). Remediation of wastewater using various nano-materials. In Arabian Journal of Chemistry (Vol. 12, Issue 8, pp. 4897–4919). Elsevier B.V. https://doi.org/10.1016/j.arabjc.2016.10.004 | spa |
dc.identifier.bibliographicCitation | Anónimo. (2016). La contaminación del río Bogotá impide aprovechar su potencial. Revista Dinero. https://www.dinero.com/economia/articulo/la-contaminacion-del-rio-bogota-impide-aprovechar-su-potencial/226565 | spa |
dc.identifier.bibliographicCitation | Anónimo. (2020). Río Bogotá, un guerrero ancestral que espera su renacer. Revista Semana. https://sostenibilidad.semana.com/actualidad/articulo/rio-bogota-un-guerrero-ancestral-que-espera-su-renacer/49052 | spa |
dc.identifier.bibliographicCitation | Apte, A. D., Verma, S., Tare, V., & Bose, P. (2005). Oxidation of Cr(III) in tannery sludge to Cr(VI): Field observations and theoretical assessment. Journal of Hazardous Materials, 121(1–3), 215–222. https://doi.org/10.1016/j.jhazmat.2005.02.010 | spa |
dc.identifier.bibliographicCitation | Artunduaga Cuellar, O. F. (2015). Tratamientos para la remoción de Cromo (VI) presente en aguas residuales. Revista Nova, 1(1). https://doi.org/10.23850/25004476.187 | spa |
dc.identifier.bibliographicCitation | Azimi, A., Azari, A., Rezakazemi, M., & Ansarpour, M. (2017). Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Reviews, 4(1), 37–59. https://doi.org/10.1002/cben.201600010 | spa |
dc.identifier.bibliographicCitation | Rajput, S., Pittman, C. U., & Mohan, D. (2016b). Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. Journal of Colloid and Interface Science, 468, 334–346. https://doi.org/10.1016/J.JCIS.2015.12.008 | spa |
dc.identifier.bibliographicCitation | Ray, P. Z., & Shipley, H. J. (2015). Inorganic nano-adsorbents for the removal of heavy metals and arsenic: A review. RSC Advances, 5(38), 29885–29907. https://doi.org/10.1039/c5ra02714d | spa |
dc.identifier.bibliographicCitation | Religa, P., Kowalik, A., & Gierycz, P. (2011). Application of nanofiltration for chromium concentration in the tannery wastewater. Journal of Hazardous Materials, 186(1), 288–292. https://doi.org/10.1016/j.jhazmat.2010.10.112 | spa |
dc.identifier.bibliographicCitation | Salgot, M., & Folch, M. (2018). Wastewater treatment and water reuse. In Current Opinion in Environmental Science and Health (Vol. 2, pp. 64–74). Elsevier B.V. https://doi.org/10.1016/j.coesh.2018.03.005 | spa |
dc.identifier.bibliographicCitation | Salman, R. H., Hassan, H. A., Abed, K. M., Al-Alawy, A. F., Tuama, D. A., Hussein, K. M., & Jabir, H. A. (2020). Removal of chromium ions from a real wastewater of leather industry using electrocoagulation and reverse osmosis processes. AIP Conference Proceedings, 2213, 020186. https://doi.org/10.1063/5.0000201 | spa |
dc.identifier.bibliographicCitation | Samrot, A. V., Sahithya, C. S., Jenifer Selvarani, A., Pachiyappan, S., & Suresh Kumar, S. U. (2019). Surface-engineered super-paramagnetic iron oxide nanoparticles for chromium removal. International Journal of Nanomedicine, 14, 8105–8119. https://doi.org/10.2147/IJN.S214236 | spa |
dc.identifier.bibliographicCitation | Saxena, G., Chandra, R., & Bharagava, R. N. (2017). Environmental pollution, toxicity profile and treatment approaches for tannery wastewater and its chemical pollutants. In Reviews of Environmental Contamination and Toxicology (Vol. 240, pp. 31–69). Springer New York LLC. https://doi.org/10.1007/398_2015_5009 | spa |
dc.identifier.bibliographicCitation | Secretaría Distrital de Ambiente Alcaldía de Bogotá. (n.d.). GUÍA CONCEPTUAL SOBRE LA PTAR SALITRE . Retrieved June 2, 2020, from http://www.secretariadeambiente.gov.co/sda/libreria/pdf/riobogota/crono.pdf | spa |
dc.identifier.bibliographicCitation | Shahid, M., Shamshad, S., Rafiq, M., Khalid, S., Bibi, I., Niazi, N. K., Dumat, C., & Rashid, M. I. (2017). Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. In Chemosphere (Vol. 178, pp. 513–533). Elsevier Ltd. https://doi.org/10.1016/j.chemosphere.2017.03.074 | spa |
dc.identifier.bibliographicCitation | Shi, D., Zhang, X., Wang, J., & Fan, J. (2018). Highly reactive and stable nanoscale zero-valent iron prepared within vesicles and its high-performance removal of water pollutants. Applied Catalysis B: Environmental, 221, 610–617. https://doi.org/10.1016/j.apcatb.2017.09.057 | spa |
dc.identifier.bibliographicCitation | Sobhanardakani, S., & Zandipak, R. (2017). Synthesis and application of TiO2/SiO2/Fe3O4 nanoparticles as novel adsorbent for removal of Cd(II), Hg(II) and Ni(II) ions from water samples. Clean Technologies and Environmental Policy, 19(7), 1913–1925. https://doi.org/10.1007/s10098-017-1374-5 | spa |
dc.identifier.bibliographicCitation | Sierra Garcia, S. C. (2018). Environmental Effects Generated By The Discharges Of The Leather Tanning Industries: Implications In The High Basin Of The Bogotá River. https://repository.unimilitar.edu.co/bitstream/handle/10654/17868/SierraGarciaSoniaCarolina2018.pdf?sequence=2&isAllowed=y | spa |
dc.identifier.bibliographicCitation | Simeonidis, K., Kaprara, E., Samaras, T., Angelakeris, M., Pliatsikas, N., Vourlias, G., Mitrakas, M., & Andritsos, N. (2015). Optimizing magnetic nanoparticles for drinking water technology: The case of Cr(VI). Science of the Total Environment, 535, 61–68. https://doi.org/10.1016/j.scitotenv.2015.04.033 | spa |
dc.identifier.bibliographicCitation | Thanh Ho, V. T., Hong, N. V. H., Van Nguyen, A., Bach, L. G., & Dinh, T. P. (2018). Core–Shell Fe@SiO 2 Nanoparticles Synthesized via Modified Stober Method for High Activity in Cr(VI) Reduction . Journal of Nanoscience and Nanotechnology, 18(10), 6867–6872. https://doi.org/10.1166/jnn.2018.15721 | spa |
dc.identifier.bibliographicCitation | Thekkudan, V. N., Vaidyanathan, V. K., Ponnusamy, S. K., Charles, C., Sundar, S. L., Vishnu, D., Anbalagan, S., Vaithyanathan, V. K., & Subramanian, S. (2017). Review on nanoadsorbents: A solution for heavy metal removal from wastewater. In IET Nanobiotechnology (Vol. 11, Issue 3, pp. 213–224). Institution of Engineering and Technology. https://doi.org/10.1049/iet-nbt.2015.0114 | spa |
dc.identifier.bibliographicCitation | Vásquez Daza, L. (2012). Las curtiembres en el Barrio San Benito de Bogotá. Un análisis bioético en la perspectiva de Hans Jonas. https://repository.javeriana.edu.co/handle/10554/2144 | spa |
dc.identifier.bibliographicCitation | Wang, F., Yang, W., Zheng, F., & Sun, Y. (2018). Removal of Cr (VI) from Simulated and Leachate Wastewaters by Bentonite-Supported Zero-Valent Iron Nanoparticles. International Journal of Environmental Research and Public Health, 15(10), 2162. https://doi.org/10.3390/ijerph15102162 | spa |
dc.identifier.bibliographicCitation | Wang, X., Liu, X., Xiao, C., Zhao, H., Zhang, M., Zheng, N., Kong, W., Zhang, L., Yuan, H., Zhang, L., & Lu, J. (2020). Triethylenetetramine-modified hollow Fe3O4/SiO2/chitosan magnetic nanocomposites for removal of Cr(VI) ions with high adsorption capacity and rapid rate. Microporous and Mesoporous Materials, 297, 110041. https://doi.org/10.1016/j.micromeso.2020.110041 | spa |
dc.identifier.bibliographicCitation | Wu, J., Yan, M., Lv, S., Yin, W., Bu, H., Liu, L., Li, P., Deng, H., & Zheng, X. (2021). Preparation of highly dispersive and antioxidative nano zero-valent iron for the removal of hexavalent chromium. Chemosphere, 262, 127733. https://doi.org/10.1016/j.chemosphere.2020.127733 | spa |
dc.identifier.bibliographicCitation | Yang, J., Hou, B., Wang, J., Tian, B., Bi, J., Wang, N., Li, X., & Huang, X. (2019). Nanomaterials for the Removal of Heavy Metals from Wastewater. Nanomaterials, 9(3), 424. https://doi.org/10.3390/nano9030424 | spa |
dc.identifier.bibliographicCitation | Yao, S., Yuan, X., Jiang, L., Xiong, T., & Zhang, J. (2020). Recent Progress on Fullerene-Based Materials : | spa |
dc.identifier.bibliographicCitation | Zeng, Q., Huang, Y., Huang, L., Hu, L., Xiong, D., Zhong, H., & He, Z. (2020). Efficient removal of hexavalent chromium in a wide pH range by composite of SiO2 supported nano ferrous oxalate. Chemical Engineering Journal, 383, 123209. https://doi.org/10.1016/j.cej.2019.123209 | spa |
dc.identifier.bibliographicCitation | Barros, J. (2020). ¿Por qué la cuenca media es la que más contamina al río Bogotá y cómo recuperla? Revista Semana. https://sostenibilidad.semana.com/medio-ambiente/articulo/por-que-la-cuenca-media-es-la-que-mas-contamina-al-rio-bogota-y-como-recuperla/49548 | spa |
dc.identifier.bibliographicCitation | Zhao, Y., Kang, D., Chen, Z., Zhan, J., & Wu, X. (2018). Removal of Chromium Using Electrochemical Approaches: A Review. Int. J. Electrochem. Sci, 13, 1250–1259. https://doi.org/10.20964/2018.02.46 | spa |
dc.identifier.bibliographicCitation | Zhou, L., Li, R., Zhang, G., Wang, D., Cai, D., & Wu, Z. (2018). Zero-valent iron nanoparticles supported by functionalized waste rock wool for efficient removal of hexavalent chromium. Chemical Engineering Journal, 339, 85–96. https://doi.org/10.1016/j.cej.2018.01.132 | spa |
dc.identifier.bibliographicCitation | Bautista Franco, C. L., Moreno Vargas, C. C., & Socha Matiz, A. (2015). Estrategias de responsabilidad social ambiental de las curtiembres en la localidad de Tunjuelito [Universidad Cooperativa de Colombia]. https://repository.ucc.edu.co/bitstream/20.500.12494/10378/1/2015_estrategias_responsabilidad_social.pdf | spa |
dc.identifier.bibliographicCitation | Belay, A. A. (2010). Impacts of Chromium from Tannery Effluent and Evaluation of Alternative Treatment Options. Journal of Environmental Protection, 1, 53–58. https://doi.org/10.4236/jep.2010.11007 | spa |
dc.identifier.bibliographicCitation | Bhushan, B. (2017). Introduction to nanotechnology. In Springer Handbooks (pp. 1–19). Springer. https://doi.org/10.1007/978-3-662-54357-3_1 | spa |
dc.identifier.bibliographicCitation | Bralower, T., & Bice, D. (2019). Distribution of Water on the Earth’s Surface | EARTH 103: Earth in the Future. https://www.e-education.psu.edu/earth103/node/701 | spa |
dc.identifier.bibliographicCitation | Bravo Gallardo, M. A. (2017). Coagulantes y floculantes naturales usados en la reducción de turbidez, solidos suspendidos, colorantes y metales pesados en aguas residuales. [Universidad Distrital Francisco José Caldas]. http://repository.udistrital.edu.co/bitstream/11349/5609/1/BravoGallardoMonicaAlejandra2017.pdf | spa |
dc.identifier.bibliographicCitation | Campos, A. F. C., de Oliveira, H. A. L., da Silva, F. N., da Silva, F. G., Coppola, P., Aquino, R., Mezzi, A., & Depeyrot, J. (2019). Core-Shell Bimagnetic Nanoadsorbents for Hexavalent Chromium Removal from Aqueous Solutions. Journal of Hazardous Materials, 362(May 2018), 82–91. https://doi.org/10.1016/j.jhazmat.2018.09.008 | spa |
dc.identifier.bibliographicCitation | CAR. (2018). CAR | Río Bogotá. https://www.car.gov.co/rio_bogota | spa |
dc.identifier.bibliographicCitation | Cardona Pérez, V. (2018). Plantas de tratamiento de aguas residuales del río Bogotá generan gases de efecto invernadero | Universidad Central. https://www.ucentral.edu.co/noticentral/plantas-tratamiento-aguas-residuales-del-rio-bogota-generan-gases-efecto-invernadero | spa |
dc.identifier.bibliographicCitation | Carreño Sayago, U. F., Perez, J. J., Cote Montañez, D., & Agatón, A. L. (2016). Modelación de un sistema de lodos activados en el sector de las curtiembres de San Benito Bogotá. Producción + Limpia, 11(2), 9–21. https://doi.org/10.22507/pml.v11n2a1 | spa |
dc.identifier.bibliographicCitation | Chávez Andrade, J. K. (2018). Recuperación de cromo a partir de lodos residuales provenientes del proceso de curtido en la industria de la curtiembre [Universidad Central del Ecuador]. http://www.dspace.uce.edu.ec/bitstream/25000/17033/1/T-UCE-0017-IQU-019.pdf | spa |
dc.identifier.bibliographicCitation | Chen, G., Feng, J., Wang, W., Yin, Y., & Liu, H. (2017). Photocatalytic removal of hexavalent chromium by newly designed and highly reductive TiO2 nanocrystals. Water Research, 108, 383–390. https://doi.org/10.1016/j.watres.2016.11.013 | spa |
dc.identifier.bibliographicCitation | Chen, Q. Y., Murphy, A., Sun, H., & Costa, M. (2019). Molecular and epigenetic mechanisms of Cr(VI)-induced carcinogenesis. In Toxicology and Applied Pharmacology (Vol. 377, p. 114636). Academic Press Inc. https://doi.org/10.1016/j.taap.2019.114636 | spa |
dc.identifier.bibliographicCitation | Cristancho Montenegro, D. L., Pinto Hernández, L. M., & Tique Hilarión, J. S. (2019). Evaluación de la eficiencia de un sistema de electrocoagulación en los vertimientos de curtiembres en el sector de Villapinzón (Cundinamarca). MUTIS, 2, 34–48. https://doi.org/10.21789/22561498.1590 | spa |
dc.identifier.bibliographicCitation | De Gisi, S., Casella, P., Cellamare, C. M., Ferraris, M., Petta, L., & Notarnicola, M. (2017). Wastewater Reuse. In Encyclopedia of Sustainable Technologies (pp. 53–68). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10528-7 | spa |
dc.identifier.bibliographicCitation | Ding, G. K. C. (2017). Wastewater Treatment and Reuse-The Future Source of Water Supply. In Encyclopedia of Sustainable Technologies (pp. 43–52). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10170-8 | spa |
dc.identifier.bibliographicCitation | Documentación IDEAM. (n.d.). Retrieved June 2, 2020, from http://documentacion.ideam.gov.co/openbiblio/bvirtual/021318/03TextoCompleto.pdf | spa |
dc.identifier.bibliographicCitation | Dubey, S., Banerjee, S., Upadhyay, S. N., & Sharma, Y. C. (2017). Application of common nano-materials for removal of selected metallic species from water and wastewaters: A critical review. Journal of Molecular Liquids, 240, 656–677. https://doi.org/10.1016/j.molliq.2017.05.107 | spa |
dc.identifier.bibliographicCitation | Ealias, A. M., & P, S. M. (2017). A review on the classification, characterisation, synthesis of nanoparticles and their application A review on the classification, characterisation, synthesis of nanoparticles and their application Related content Synthesis of Aluminium Nanoparticles in A. IOP Conference Series: Materials Science and Engineering, 263(3). https://doi.org/10.1088/1757-899X/263/3/032019 | spa |
dc.identifier.bibliographicCitation | EPA. (2016). Chromium Compounds. https://www.epa.gov/sites/production/files/2016-09/documents/chromium-compounds.pdf | spa |
dc.identifier.bibliographicCitation | EPA. (2020). CLU-IN | Contaminants > Chromium VI > Chemistry and Behavior. https://clu-in.org/contaminantfocus/default.focus/sec/chromium_VI/cat/Chemistry_and_Behavior/ | spa |
dc.identifier.bibliographicCitation | Eskin, M. (2016). Chromium: Is It Essential and Is It Safe? Vitam Miner, 5. https://doi.org/10.4172/2376-1318.1000e144 | spa |
dc.identifier.bibliographicCitation | Estupiñan, K. (2018). Curtiembres selladas en San Benito. Alcaldía de Bogotá. https://bogota.gov.co/mi-ciudad/ambiente/curtiembres-selladas-en-san-benito | spa |
dc.identifier.bibliographicCitation | Ezzatahmadi, N., Ayoko, G. A., Millar, G. J., Speight, R., Yan, C., Li, J., Li, S., Zhu, J., & Xi, Y. (2017). Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: A review. In Chemical Engineering Journal (Vol. 312, pp. 336–350). Elsevier B.V. https://doi.org/10.1016/j.cej.2016.11.154 | spa |
dc.identifier.bibliographicCitation | Ferroudj, N., Nzimoto, J., Davidson, A., Talbot, D., Briot, E., Dupuis, V., Bée, A., Medjram, M. S., & Abramson, S. (2013). Maghemite nanoparticles and maghemite/silica nanocomposite microspheres as magnetic Fenton catalysts for the removal of water pollutants. Applied Catalysis B: Environmental, 136–137, 9–18. https://doi.org/10.1016/j.apcatb.2013.01.046 | spa |
dc.identifier.bibliographicCitation | Franco González, N. G., Clavijo Rios, C., Niño García, S. L., & Salazar Neira, J. C. (2017). Boletin del índice de calidad del agua en corrientes superficiales “ica” 2017 - ii. https://www.car.gov.co/uploads/files/5ada16a46c9f6.pdf | spa |
dc.identifier.bibliographicCitation | Fu, F., Ma, J., Xie, L., Tang, B., Han, W., & Lin, S. (2013). Chromium removal using resin supported nanoscale zero-valent iron. Journal of Environmental Management, 128, 822–827. https://doi.org/10.1016/j.jenvman.2013.06.044 | spa |
dc.identifier.bibliographicCitation | García Muñoz, O. E., & Ramirez Rodriguez, L. N. (2019). Evaluación de una propuesta para el sistema de tratamiento de aguas residuales de curtiembre y marroquinería f.b [Fundación Universidad de America]. http://repository.uamerica.edu.co/bitstream/20.500.11839/7378/1/6132093-2019-1-IQ.pdf | spa |
dc.identifier.bibliographicCitation | Gómez, S. (2016). Características tecnológicas del cuero napa de ovino adulto, mediante los métodos de curtido wet- blue y wet. 132. | spa |
dc.identifier.bibliographicCitation | González Pachón, L. A. (2019). Gestión para mitigar los impactos ambientales generados por las curtiembres de bogotá con el fin de concientizar sobre el cambio climático [Universidad Militar Nueva Granada]. https://repository.unimilitar.edu.co/bitstream/handle/10654/21130/GonzalezPachonLuzAngelica2019.pdf?sequence=1&isAllowed=y | spa |
dc.identifier.bibliographicCitation | GracePavithra, K., Jaikumar, V., Kumar, P. S., & SundarRajan, P. S. (2019). A review on cleaner strategies for chromium industrial wastewater: Present research and future perspective. Journal of Cleaner Production, 228, 580–593. https://doi.org/10.1016/j.jclepro.2019.04.117 | spa |
dc.identifier.bibliographicCitation | Hasan, S. (2015). A Review on Nanoparticles: Their Synthesis and Types. In Research Journal of Recent Sciences (Vol. 4). www.isca.me | spa |
dc.identifier.bibliographicCitation | Hernandez, E. (2018). Criterios de Implementación ISO 14001: 2015. Caso de estudio Sector Curtiembres. https://repository.unad.edu.co/bitstream/handle/10596/19108/80245223.pdf?sequence=1&isAllowed=y | spa |
dc.identifier.bibliographicCitation | Hossain, M., Hossain, M., Begum, M., Shahjahan, M., Islam, M., & Saha, B. (2018). Magnetite (Fe3O4) nanoparticles for chromium removal. Bangladesh Journal of Scientific and Industrial Research, 53(3), 219–224. https://doi.org/10.3329/bjsir.v53i3.3826 | spa |
dc.identifier.bibliographicCitation | Islam, J. B., Furukawa, M., Tateishi, I., Katsumata, H., & Kaneco, S. (2019). Photocatalytic Reduction of Hexavalent Chromium with Nanosized TiO2 in Presence of Formic Acid. ChemEngineering, 3(2), 33. https://doi.org/10.3390/chemengineering3020033 | spa |
dc.identifier.bibliographicCitation | Jin, W., Du, H., Zheng, S., & Zhang, Y. (2016). Electrochemical processes for the environmental remediation of toxic Cr(VI): A review. Electrochimica Acta, 191, 1044–1055. https://doi.org/10.1016/J.ELECTACTA.2016.01.130 | spa |
dc.identifier.bibliographicCitation | Justin, C., Philip, S. A., & Samrot, A. V. (2017). Synthesis and characterization of superparamagnetic iron-oxide nanoparticles (SPIONs) and utilization of SPIONs in X-ray imaging. Applied Nanoscience (Switzerland), 7(7), 463–475. https://doi.org/10.1007/s13204-017-0583-x | spa |
dc.identifier.bibliographicCitation | Kahrizi, H., Bafkar, A., & Farasati, M. (2016). Effect of nanotechnology on heavy metal removal from aqueous solution. Journal of Central South University, 23(10), 2526–2535. https://doi.org/10.1007/s11771-016-3313-8 | spa |
dc.identifier.bibliographicCitation | Kalidhasan, S., Santhana Krishna Kumar, A., Rajesh, V., & Rajesh, N. (2016). The journey traversed in the remediation of hexavalent chromium and the road ahead toward greener alternatives-A perspective. In Coordination Chemistry Reviews (Vol. 317, pp. 157–166). Elsevier. https://doi.org/10.1016/j.ccr.2016.03.004 | spa |
dc.identifier.bibliographicCitation | Kamegawa, T., Ishiguro, Y., Magatani, Y., & Yamashita, H. (2016). Spherical TiO2/Mesoporous SiO2 core/shell type photocatalyst for water purification. Journal of Nanoscience and Nanotechnology, 16(9), 9273–9277. https://doi.org/10.1166/jnn.2016.12894 | spa |
dc.identifier.bibliographicCitation | Kan, C. C., Ibe, A. H., Rivera, K. K. P., Arazo, R. O., & de Luna, M. D. G. (2017). Hexavalent chromium removal from aqueous solution by adsorbents synthesized from groundwater treatment residuals. Sustainable Environment Research, 27(4), 163–171. https://doi.org/10.1016/j.serj.2017.04.001 | spa |
dc.identifier.bibliographicCitation | Kaushal, A., & Singh, S. K. (2017). Removal of heavy metals by nanoadsorbents: A review. Journal of Environment and Biotechnology Research. www.vinanie.com/jebr | spa |
dc.identifier.bibliographicCitation | Kazemi, M., Jahanshahi, M., & Peyravi, M. (2018). Hexavalent chromium removal by multilayer membrane assisted by photocatalytic couple nanoparticle from both permeate and retentate. Journal of Hazardous Materials, 344, 12–22. https://doi.org/10.1016/j.jhazmat.2017.09.059 | spa |
dc.identifier.bibliographicCitation | Khan, F. S. A., Mubarak, N. M., Khalid, M., Walvekar, R., Abdullah, E. C., Mazari, S. A., Nizamuddin, S., & Karri, R. R. (2020). Magnetic nanoadsorbents’ potential route for heavy metals removal—a review. Environmental Science and Pollution Research, 27(19), 24342–24356. https://doi.org/10.1007/s11356-020-08711-6 | spa |
dc.identifier.bibliographicCitation | Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. In Arabian Journal of Chemistry (Vol. 12, Issue 7, pp. 908–931). Elsevier B.V. https://doi.org/10.1016/j.arabjc.2017.05.011 | spa |
dc.identifier.bibliographicCitation | Koei, N. (2011). Car alternativas para el manejo y disposicion de biosolidos Producto Final-Anexo No. 20 Alternativas para el Manejo y Disposición de Biosólidos de la PTAR Salitre. | spa |
dc.identifier.bibliographicCitation | Lakherwal, D. (2014). Adsorption of Heavy Metals: A Review. In International Journal of Environmental Research and Development (Vol. 4, Issue 1). http://www.ripublication.com/ijerd.htm | spa |
dc.identifier.bibliographicCitation | Latorre Torres, D. F. (2014). Diagnóstico ambiental y programa de control y seguimiento al sector curtiembres del barrio San Benito de la ciudad de Bogotá [Universidad de La Salle]. https://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=1010&context=maest_ingenieria | spa |
dc.identifier.bibliographicCitation | Lim, J. Y., Mubarak, N. M., Abdullah, E. C., Nizamuddin, S., Khalid, M., & Inamuddin. (2018). Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals — A review. Journal of Industrial and Engineering Chemistry, 66, 29–44. https://doi.org/10.1016/J.JIEC.2018.05.028 | spa |
dc.identifier.bibliographicCitation | Lisjak, D., & Mertelj, A. (2018). Anisotropic magnetic nanoparticles: A review of their properties, syntheses and potential applications. In Progress in Materials Science (Vol. 95, pp. 286–328). Elsevier Ltd. https://doi.org/10.1016/j.pmatsci.2018.03.003 | spa |
dc.identifier.bibliographicCitation | Liu, L., Luo, X.-B., Ding, L., & Luo, S.-L. (2019). Application of Nanotechnology in the Removal of Heavy Metal From Water. In Nanomaterials for the Removal of Pollutants and Resource Reutilization. Elsevier Inc. https://doi.org/10.1016/b978-0-12-814837-2.00004-4 | spa |
dc.identifier.bibliographicCitation | Maitlo, H. A., Kim, K. H., Kumar, V., Kim, S., & Park, J. W. (2019). Nanomaterials-based treatment options for chromium in aqueous environments. In Environment International (Vol. 130, p. 104748). Elsevier Ltd. https://doi.org/10.1016/j.envint.2019.04.020 | spa |
dc.identifier.bibliographicCitation | Marín, J. (2019). RÍO BOGOTÁ: Donde nace, su historia, recorrido y más. https://conocelosrios.com/c-colombia/rio-bogota/ | spa |
dc.identifier.bibliographicCitation | Martinez Buitrago, S. Y., & Romero Coca, J. A. (2018). Revisión del estado actual de la industria de las curtiembres en sus procesos y productos: un análisis de su competitividad. Revista Facultad de Ciencias Económicas, 26(1), 113–124. https://doi.org/10.18359/rfce.2357 | spa |
dc.identifier.bibliographicCitation | Miguel Córdova Bravo, H., Vargas Parker, R., Téllez Monzón, L., Flor Cesare Coral, M., Becker, R., & Visitación Figueroa, L. (2013). Influencia del uso de acomplejantes en el baño de curtido sobre la calidad final del cuero. In Rev Soc Quím Perú (Vol. 79, Issue 4). www.tanquimica.com.br, | spa |
dc.identifier.bibliographicCitation | Ministerio de Ambiente y Desarrollo Sostenible. (2015). Resolución 631 de 2015 Ministerio de Ambiente y Desarrollo Sostenible. https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=70346&dt=S | spa |
dc.identifier.bibliographicCitation | Mitra, S., Sarkar, A., & Sen, S. (2017). Removal of chromium from industrial effluents using nanotechnology: a review. Nanotechnology for Environmental Engineering, 2(1), 1–14. https://doi.org/10.1007/s41204-017-0022-y | spa |
dc.identifier.bibliographicCitation | Mnif, A., Bejaoui, I., Mouelhi, M., & Hamrouni, B. (2017). Hexavalent Chromium Removal from Model Water and Car Shock Absorber Factory Effluent by Nanofiltration and Reverse Osmosis Membrane. International Journal of Analytical Chemistry, 2017. https://doi.org/10.1155/2017/7415708 | spa |
dc.identifier.bibliographicCitation | Nam, A., Choi, U. S., Yun, S. T., Choi, J. W., Park, J. A., & Lee, S. H. (2018). Evaluation of amine-functionalized acrylic ion exchange fiber for chromium(VI) removal using flow-through experiments modeling and real wastewater. Journal of Industrial and Engineering Chemistry, 66, 187–195. https://doi.org/10.1016/j.jiec.2018.05.029 | spa |
dc.identifier.bibliographicCitation | Nawaz, T., Zulfiqar, S., Sarwar, M. I., & Iqbal, M. (2020). Synthesis of diglycolic acid functionalized core-shell silica coated Fe3O4 nanomaterials for magnetic extraction of Pb(II) and Cr(VI) ions. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-67168-2 | spa |
dc.identifier.bibliographicCitation | Nematollahzadeh, A., Seraj, S., & Mirzayi, B. (2015). Catecholamine coated maghemite nanoparticles for the environmental remediation: Hexavalent chromium ions removal. Chemical Engineering Journal, 277, 21–29. https://doi.org/10.1016/j.cej.2015.04.135 | spa |
dc.identifier.bibliographicCitation | Nogueira, V., Lopes, I., Rocha-Santos, T., Gonçalves, F., & Pereira, R. (2015). Toxicity of solid residues resulting from wastewater treatment with nanomaterials. Aquatic Toxicology, 165, 172–178. https://doi.org/10.1016/j.aquatox.2015.05.021 | spa |
dc.identifier.bibliographicCitation | Ojemaye, M. O., Okoh, O. O., & Okoh, A. I. (2017). Performance of NiFe2O4-SiO2-TiO2 Magnetic Photocatalyst for the Effective Photocatalytic Reduction of Cr(VI) in Aqueous Solutions. Journal of Nanomaterials, 2017. https://doi.org/10.1155/2017/5264910 | spa |
dc.identifier.bibliographicCitation | Okaiyeto, K., Nwodo, U. U., Okoli, S. A., Mabinya, L. V., & Okoh, A. I. (2016). Implications for public health demands alternatives to inorganic and synthetic flocculants: Bioflocculants as important candidates. In MicrobiologyOpen (Vol. 5, Issue 2, pp. 177–211). Blackwell Publishing Ltd. https://doi.org/10.1002/mbo3.334 | spa |
dc.identifier.bibliographicCitation | Oliveira, H. (2012). Chromium as an Environmental Pollutant: Insights on Induced Plant Toxicity. Journal of Botany, 2012, 1–8. https://doi.org/10.1155/2012/375843 | spa |
dc.identifier.bibliographicCitation | Ortiz, N. E., & Carmona, J. C. (2015). Aprovechamiento De Cromo Eliminado En Aguas Residuales De Curtiembres (San Benito, Bogotá), Mediante Tratamiento Con Sulfato De Sodio. Revista Luna Azul, 40(Enero-Junio), 117–126. https://doi.org/10.17151/luaz.2015.40.9 | spa |
dc.identifier.bibliographicCitation | Ortiz Penagos, N. E. (2013). Recuperación Y Reutilización De Cromo De Las Aguas Residuales Del Proceso De Curtido De Curtiembres De San Benito (Bogotá), Mediante Un Proceso Sostenible Y Viable Tecnológicamente [Universidad De Manizales]. http://ridum.umanizales.edu.co:8080/xmlui/bitstream/handle/6789/1076/Ortiz_Penagos_Nidia_Elena_2013.pdf?sequence=1 | spa |
dc.identifier.bibliographicCitation | Pakade, V. E., Tavengwa, N. T., & Madikizela, L. M. (2019). Recent advances in hexavalent chromium removal from aqueous solutions by adsorptive methods. In RSC Advances (Vol. 9, Issue 45, pp. 26142–26164). Royal Society of Chemistry. https://doi.org/10.1039/c9ra05188k | spa |
dc.identifier.bibliographicCitation | Panda, H., Tiadi, N., Mohanty, M., & Mohanty, C. R. (2017). Studies on adsorption behavior of an industrial waste for removal of chromium from aqueous solution. South African Journal of Chemical Engineering, 23, 132–138. https://doi.org/10.1016/j.sajce.2017.05.002 | spa |
dc.identifier.bibliographicCitation | Paul, M. L., Samuel, J., Roy, R., Chandrasekaran, N., & Mukherjee, A. (2015a). Studies on Cr(VI) removal from aqueous solutions by nanotitania under visible light and dark conditions. Bulletin of Materials Science, 38(2), 393–400. https://doi.org/10.1007/s12034-015-0879-y | spa |
dc.identifier.bibliographicCitation | Paul, M. L., Samuel, J., Roy, R., Chandrasekaran, N., & Mukherjee, A. (2015b). Studies on Cr(VI) removal from aqueous solutions by nanotitania under visible light and dark conditions. Bulletin of Materials Science, 38(2), 393–400. https://doi.org/10.1007/s12034-015-0879-y | spa |
dc.identifier.bibliographicCitation | Peng, H., & Guo, J. (2020). Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: a review. In Environmental Chemistry Letters (Vol. 1, p. 3). Springer. https://doi.org/10.1007/s10311-020-01058-x | spa |
dc.identifier.bibliographicCitation | Peng, H., Guo, J., Li, B., Liu, Z., & Tao, C. (2018). High-efficient recovery of chromium (VI) with lead sulfate. Journal of the Taiwan Institute of Chemical Engineers, 85, 149–154. https://doi.org/10.1016/j.jtice.2018.01.028 | spa |
dc.identifier.bibliographicCitation | Peng, H., Leng, Y., & Guo, J. (2019). Electrochemical Removal of Chromium (VI) from Wastewater. Applied Sciences, 9(6), 1156. https://doi.org/10.3390/app9061156 | spa |
dc.identifier.bibliographicCitation | Pinilla Arbeláez, D. E. (2014). Precipitación De Cromo Y Reutilización Del Agua De Vertimientos De Curtiembres De San Benito (Bogotá). Http://Repository.Usta.Edu.Co/Bitstream/Handle/11634/2647/2014danielpinilla.Pdf?Sequence=4&Isallowed=Y | spa |
dc.identifier.bibliographicCitation | Predescu, A., Matei, E., Predescu, A., Berbecaru, A., Sohaciu, M., & Predescu, C. (2016). REMOVAL OF HEXAVALENT CHROMIUM FROM WATERS BY MEANS OF A TiO2-Fe3O4 NANOCOMPOSITE (Vol. 15, Issue 5). http://omicron.ch.tuiasi.ro/EEMJ/ | spa |
dc.identifier.bibliographicCitation | Rajput, S., Pittman, C. U., & Mohan, D. (2016a). Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. Journal of Colloid and Interface Science, 468, 334–346. https://doi.org/10.1016/J.JCIS.2015.12.008 | spa |
dc.identifier.instname | instname:Universidad Antonio Nariño | spa |
dc.identifier.reponame | reponame:Repositorio Institucional UAN | spa |
dc.identifier.repourl | repourl:https://repositorio.uan.edu.co/ | spa |
dc.identifier.uri | http://repositorio.uan.edu.co/handle/123456789/1493 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Antonio Nariño | spa |
dc.publisher.campus | Bogotá - Circunvalar | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.program | Bioquímica | spa |
dc.rights | Acceso abierto | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.rights.license | Attribution 4.0 International (CC BY 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject | Tratamiento | es_ES |
dc.subject | Nanomaterial | es_ES |
dc.subject | Curtiembres | es_ES |
dc.subject | Cromo Hexavalente | es_ES |
dc.subject.keyword | Tanneries | es_ES |
dc.subject.keyword | hexavalent chromium | es_ES |
dc.subject.keyword | treatment | es_ES |
dc.subject.keyword | nanomaterial | es_ES |
dc.title | Aproximación a la remediación de efluentes industriales provenientes de sector curtiembres en Bogotá a través de una solución nanotecnológica | es_ES |
dc.type | Trabajo de grado (Pregrado y/o Especialización) | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
Files
Original bundle
1 - 2 of 2
- Name:
- 2020AutorizacionesdeAutores.pdf
- Size:
- 756.31 KB
- Format:
- Adobe Portable Document Format
- Description:
- Autorización de Autores
- Name:
- 2020DiegoAndresCastiblancoRamirez.pdf
- Size:
- 1.13 MB
- Format:
- Adobe Portable Document Format
- Description:
- Trabajo de Grado
License bundle
1 - 1 of 1
- Name:
- license.txt
- Size:
- 2.65 KB
- Format:
- Item-specific license agreed upon to submission
- Description: