Predicción de la fase pre-ictal de convulsiones en pacientes con epilepsia a partir de señales electroencefalográficas y electrocardiográficas
dc.contributor.advisor | Duarte González, Mario Enrique | spa |
dc.contributor.author | Martinez Saiz, John Jairo | spa |
dc.date.accessioned | 2021-10-11T20:27:19Z | |
dc.date.available | 2021-10-11T20:27:19Z | |
dc.date.issued | 2021-06-08 | spa |
dc.description.abstract | Seizures are harmful to patients, who, without timely prediction, can lead to death. Therefore, having algorithms that indicate when an epileptic episode is going to occur provides security and action time to act. The present work focuses on the prediction of seizures in patients with epilepsy from electroencephalography (EEG) and Electrocardiography (ECG) signals. The study was carried out in patients who suffered seizures and Machine Learning algorithms were implemented for the prediction of the pre-ictal phase of seizures using the "Class Learner" tool from Matlab. For the development of the work, the CRISP-DM methodology was used, with which characteristics of 10 patients can be extracted in order to train different classification algorithms. The EEG and EKG signals were considered together and separately to show which of the two obtained better performance according to the metrics computed from the confusion matrix. It was shown that the best sensitivity was obtained when the characteristics extracted from the EEG and EKG were worked together. | eng |
dc.description.abstract | Las convulsiones son perjudiciales para los pacientes, los cuales, sin la predicción oportuna, pueden llegar a la muerte. Por lo tanto, tener algoritmos que indiquen cuándo va a ocurrir un episodio epiléptico brinda seguridad y tiempo de acción para actuar. El presente trabajo, se enfoca en la predicción de convulsiones en pacientes con epilepsia a partir de señales de electroencefalografía (EEG) y Electrocardiografía (ECG). El estudio se realizó en pacientes que sufrieron convulsiones y se implementan algoritmos de Machine Learning para la predicción de la fase preictal de convulsiones usando la herramienta “classification learner” de Matlab. Para el desarrollo del trabajo, se utilizó la metodología CRISP-DM, con la cual se logró extraer características de 10 pacientes con la finalidad de entrenar diferentes algoritmos de clasificación. Se consideró las señales EEG y EKG en conjunto y por separado para mostrar cuál de las dos obtuvo un mejor rendimiento según las métricas computadas a partir de la matriz de confusión.Se mostró que la mejor sensibilidad fue obtenida cuando se trabajó con las características extraídas de las EEG y EKG en conjunto. | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Ingeniero(a) Biomédico(a) | spa |
dc.description.notes | Presencial | spa |
dc.identifier.bibliographicCitation | ZAVALA-VILLEDA, José Alfredo. Descripción del electrocardiograma normal y lectura del electrocardiograma. Revista Mexicana de Anestesiología, 2017, vol. 40, no S1, p. 210-213. Koertge, N. (2008). Complete Dictionary of Scientific Biography. | spa |
dc.identifier.bibliographicCitation | MORENO, Iveth, et al. Los sistemas de interfaz cerebro-computadora basado en EEG: características y aplicaciones. I+ D Tecnológico, 2019, vol. 15, no 2, p. 13-26. Engel, J. (2013). Seizures and epilepsy (Vol. 83). Oxford University Press. | spa |
dc.identifier.bibliographicCitation | NARIÑO, Daniel. Epilepsia y embarazo. Asociación Colombiana de Neurología [en línea][consultado el 13/04/2018]. Disponible en http://www. acnweb. org/guia/g2c11i. pdf, 2003. | spa |
dc.identifier.bibliographicCitation | SÁNCHEZ, Leonardo Palacios. EPILEPSIA: ALGUNAS DENOMINACIONES DADAS A TRAVÉS DE LOS SIGLOS. Medicina, 2020, vol. 42, no 3, p. 486-490 | spa |
dc.identifier.bibliographicCitation | BARRERA, Manuel Nieto; JIMÉNEZ, M. Nieto; JIMÉNEZ, E. Nieto. Epilepsias y síndromes epilépticos del preescolar y del escolar. Protocolos de Neurolo, p. 28. | spa |
dc.identifier.bibliographicCitation | YAMADA, Mikiko. UNCONTROLLED SEIZURES AND BONE HEALTH AMONG ADULT EPILEPSY PATIENTS. 2013. Tesis Doctoral. University of Kansas. | spa |
dc.identifier.bibliographicCitation | Larson, D. E. (1990). Mayo Clinic family health book. W. Morrow. | spa |
dc.identifier.bibliographicCitation | . FORNEY, Elliott M. Electroencephalogram classification by forecasting with recurrent neural networks. 2011. Tesis Doctoral. Colorado State University. | spa |
dc.identifier.bibliographicCitation | FELTANE, Amal. Time-frequency based methods for non-stationary signal analysis with application to EEG signals. 2016. | spa |
dc.identifier.bibliographicCitation | IDIÁQUEZ, Juan, et al. Bradicardia asociada a crisis epilépticas: Casos clínicos. Revista médica de Chile, 2009, vol. 137, no 3, p. 401-404. | spa |
dc.identifier.bibliographicCitation | ROSAS-ROMERO, Roberto, et al. Prediction of epileptic seizures with convolutional neural networks and functional near-infrared spectroscopy signals. Computers in biology and medicine, 2019, vol. 111, p. 103355. | spa |
dc.identifier.bibliographicCitation | HERNÁNDEZ, Olga Helena, et al. Estado epiléptico refractario en la unidad de cuidados intensivos: revisión de la literatura y diagrama de flujo de manejo en el Instituto Neurólogico de Antioquia: [revisión]. Acta neurol. colomb, 2011, p. 33-45. | spa |
dc.identifier.bibliographicCitation | RAMOS-ARGÜELLES, F., et al. Técnicas básicas de electroencefalografía: principios y aplicaciones clínicas. En Anales del sistema sanitario de Navarra. Gobierno de Navarra. Departamento de Salud, 2009. p. 69-82. Gómez Figueroa, L. J. (2016). Análisis de señales EEG para detección de eventos oculares, musculares y cognitivos (Doctoral dissertation, Industriales). | spa |
dc.identifier.instname | instname:Universidad Antonio Nariño | spa |
dc.identifier.reponame | reponame:Repositorio Institucional UAN | spa |
dc.identifier.repourl | repourl:https://repositorio.uan.edu.co/ | spa |
dc.identifier.uri | http://repositorio.uan.edu.co/handle/123456789/5015 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Antonio Nariño | spa |
dc.publisher.campus | Bogotá - Sur | spa |
dc.publisher.faculty | Facultad de Ingeniería Mecánica, Electrónica y Biomédica | spa |
dc.publisher.program | Ingeniería Biomédica | spa |
dc.rights | Acceso abierto | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | spa |
dc.rights.license | Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject | Machine Learning | es_ES |
dc.subject | electroencefalografía | es_ES |
dc.subject | electrocardiografía | es_ES |
dc.subject | metodología CRISP-DM | es_ES |
dc.subject.keyword | Machine Learning | es_ES |
dc.subject.keyword | electroencephalography | es_ES |
dc.subject.keyword | electrocardiography | es_ES |
dc.subject.keyword | CRISP-DM methodology | es_ES |
dc.title | Predicción de la fase pre-ictal de convulsiones en pacientes con epilepsia a partir de señales electroencefalográficas y electrocardiográficas | es_ES |
dc.type | Trabajo de grado (Pregrado y/o Especialización) | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
Files
Original bundle
1 - 3 of 3
- Name:
- 2021Acta.pdf
- Size:
- 241.68 KB
- Format:
- Adobe Portable Document Format
- Description:
- Acta
- Name:
- 2021Formato de Autorización.pdf
- Size:
- 838.1 KB
- Format:
- Adobe Portable Document Format
- Description:
- Autorización de autores
- Name:
- 2021John Jairo Martínez Saiz.pdf
- Size:
- 1.11 MB
- Format:
- Adobe Portable Document Format
- Description:
- Trabajo de grado
License bundle
1 - 1 of 1
- Name:
- license.txt
- Size:
- 3.66 KB
- Format:
- Item-specific license agreed upon to submission
- Description: