Evaluación del pretratamiento térmico de residuos alimenticios, para la producción de biogás mediante digestión anaerobia

dc.contributor.advisorLobo Baeta, Bruno Eduardospa
dc.contributor.advisorLuna Wandurraga, Héctor Javierspa
dc.contributor.authorCastro López, Leidy Katherinespa
dc.date.accessioned2021-03-01T20:14:35Z
dc.date.available2021-03-01T20:14:35Z
dc.date.issued2020-01-13spa
dc.descriptionPropiaes_ES
dc.description.abstractThe constant increase in population requires an increase in the demand for food. In response to such consumption, a large amount of waste and waste is generated, in addition to the impacts caused on the natural resources used to produce them. At the same time, the use of nonrenewable energy sources generates the search for alternatives of renewable sources, which can use waste or scrap from other products. As a contribution to the objectives of sustainable development, including the use of renewable and non-polluting energies; in the city of Ouro Petro, Minas Gerais-Brazil, the high generation of food waste in the university restaurant of the Federal University of Ouro Preto, demands the treatment of these, although they are currently taken for the consumption of animals, this study has the objective is to evaluate the use of food waste in the production of biogas, with visas for the energy use of the establishment itself. The food wastes were characterized physicochemically before and after applying a hydrothermal pretreatment at temperatures of 125 ° C, 160 ° C and 180 ° C, which was intended to solubilize the organic matter contained in the substrate for greater biogas production efficiency, in addition, it accelerated the hydrolysis stage of DA. He raw substrate had TS = 19.3%, VSS = 18.3%, C / N = 30, lipids = 25.4%, carbohydrates = 22.8% and proteins = 10.7%. After the substrate was pretreated, these characteristics were altered with the increase in temperature such as COD, the C / N ratio and the appearance of significant concentrations of 𝑁𝐻4+. However, the high concentration of lipids and proteins, generated inhibition of methanogens by the accumulation of fatty acids that caused acidification in the environment, achieving only values of 1.97 NmL𝐶𝐻4/ g of VSS at temperature 125 ° C and A / M = 0.5. Thus, the accumulation of fatty acids allowed microorganisms to have a large amount of food to produce intermediate products such as acetic and propionic acid, which in their transformation generate 𝐻2 obtaining values for the raw substrate of 11,59 NmL𝐻2 /g de VSS and for the pretreated substrate of 5,82 NmL𝐻2 /g de VSS a 125°C, 4,21 NmL𝐻2 /g de VSS a 160°C y 60 NmL𝐻2 /g de VSS a 180 °C, all values were obtained with the ratio A / M = 3. Therefore, it was concluded that although food residues were not positive for biomethanization, they were an excellent acidifying substrate for the production of hydrogen and volatile fatty acids, which can be products of high added value in the green industry.eng
dc.description.abstractEl aumento constante de la población, exige un aumento en la demanda de alimentos. En respuesta a dicho consumo, se genera gran cantidad de residuos y desperdicios, además de los impactos causados en los recursos naturales usados para producirlos. Paralelamente, el uso de fuentes energéticas no renovables, genera la búsqueda de alternativas de fuentes renovables, que puedan emplear los residuos o desechos provenientes de otros productos. Como contribución a los objetivos de desarrollo sostenible, entre ellos el uso de energías renovables y no contaminantes; en la ciudad de Ouro Petro, Minas Gerais-Brasil, la alta generación de residuos alimenticios en el restaurante universitario de la Universidad Federal de Ouro Preto, exige el tratamiento de los mismos, aunque actualmente son llevados para el consumo de animales, este estudio tiene como objetivo evaluar el uso de los residuos alimenticios en la producción de biogás, con visas al aprovechamiento energético del propio establecimiento. Los residuos alimenticios se caracterizaron fisicoquímicamente antes y después de aplicar un pretratamiento hidrotérmico a temperaturas de 125 °C, 160 °C y 180 °C, que tuvo como finalidad solubilizar la materia orgánica contenida en el sustrato para una mayor eficiencia de producción de biogás, además que agilizó la etapa de hidrólisis de la DA. El sustrato en bruto poseía ST= 19,3%, SV=18,3%, C/N=30, lípidos= 25,4%, carbohidratos=22,8% y proteínas=10,7%. Luego que se sometió a pretratamiento el sustrato, dichas características fueron alteradas con el aumento de la temperatura como la DQO, la relación C/N y la aparición de concentraciones significativas de 𝑁𝐻4 +. Sin embargo, la alta concentración de lípidos yproteínas, generó inhibición de los metanogénicos por la acumulación de ácidos grasos quecausaron acidificación en el medio, consiguiéndose apenas valores de 1,97 NmL𝐶𝐻4 /g de SSV a temperatura 125°C y A/M= 0,5. Así, la acumulación de ácidos grasos, permitió a los microorganismos tener gran cantidad de alimento para producir productos intermedios como ácido acético y propiónico, que en su transformación generan 𝐻2, obteniéndose valores para el sustrato en bruto de 11,59 NmL𝐻2 /g de SSV y para el sustrato pretratado de 5,82 NmL𝐻2 /g de SSV a 125°C, 4,21 NmL𝐻2 /g de SSV a 160°C y 60 NmL𝐻2 /g de SSV a 180 °C, todos los valores se obtuvieron con la relación A/M= 3. Por lo anterior, se concluyó que, aunque los residuos alimenticios no fueron positivos para la biometanización, fueron un excelente sustrato acidificante para la producción de hidrógeno y ácidos grasos volátiles, que pueden ser productos de alto valor agregado en la industria verde.spa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero(a) Ambientalspa
dc.description.notesPresencialspa
dc.identifier.bibliographicCitationAlibardi, L., & Cossu, R. (2016). Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products. Waste Management, 47, 69–77. https://doi.org/10.1016/j.wasman.2015.07.049spa
dc.identifier.bibliographicCitationAndersen, L., Lamp, A., Dieckmann, C., Baetge, S., Schmidt, L. M., & Kaltschmitt, M. (2018). Biogas plants as key units of biorefinery concepts: Options and their assessment. Journal of Biotechnology, 283, 130–139. https://doi.org/10.1016/j.jbiotec.2018.07.041spa
dc.identifier.bibliographicCitationBaêta, B. E. L., Cordeiro, P. H. de M., Passos, F., Gurgel, L. V. A., de Aquino, S. F., & FdzPolanco, F. (2017). Steam explosion pretreatment improved the biomethanization of coffee husks. Bioresource Technology, 245, 66–72. https://doi.org/10.1016/j.biortech.2017.08.110spa
dc.identifier.bibliographicCitationBong, C. P. C., Lim, L. Y., Lee, C. T., Klemeš, J. J., Ho, C. S., & Ho, W. S. (2018). The characterisation and treatment of food waste for improvement of biogas production during anaerobic digestion – A review. Journal of Cleaner Production, 172, 1545–1558. https://doi.org/10.1016/j.jclepro.2017.10.199spa
dc.identifier.bibliographicCitationCentro de Estudos e Debates Estratégicos e da Consultoria Legislativa da Câmara dos, & Deputados. (2018). PERDAS E DESPERDÍCIO DE ALIMENTOSESTRATÉGIAS PARA REDUÇÃO.spa
dc.identifier.bibliographicCitationCristóbal, J., Caldeira, C., Corrado, S., & Sala, S. (2018). Techno-economic and profitability analysis of food waste biorefineries at European level. Bioresource Technology, 259, 244– 252. https://doi.org/10.1016/j.biortech.2018.03.016spa
dc.identifier.bibliographicCitationDe Lemos Chernicharo, C. A. (2015). Anaerobic Reactors. In Water Intelligence Online (Vol. 6). https://doi.org/10.2166/9781780402116spa
dc.identifier.bibliographicCitationDieckmann, C., Lamp, A., Schmidt, L.-M., Andersen, L., Baetge, S., & Kaltschmitt, M. (2018). Von der Biogasanlage zur Bioraffinerie – Perspektiven für zukünftige BiogasanlagenkonzepteFrom Biogas Plant to Biorefinery—Future Outlook for Small Scale Biorefinery Concepts. Zeitschrift Für Energiewirtschaft, 42(3), 235–256. https://doi.org/10.1007/s12398-018-0233-3spa
dc.identifier.bibliographicCitationFAO. (n.d.). CHAPTER 2: METHODS OF FOOD ANALYSIS. Retrieved December 5, 2019, 51 from http://www.fao.org/3/y5022e/y5022e03.htm#TopOfPagespa
dc.identifier.bibliographicCitationGuo, H., Zhao, Y., Damgaard, A., Wang, Q., Lu, W., Wang, H., & Christensen, T. H. (2019). Material flow analysis of alternative biorefinery systems for managing Chinese food waste. Resources, Conservation and Recycling, 149, 197–209. https://doi.org/10.1016/j.resconrec.2019.05.010spa
dc.identifier.bibliographicCitationInstituto de Pesquisa Econômica Aplicada. (2012). Diagnóstico dos Resíduos Orgânicos do Setor Agrossilvopastoril e Agroindústrias Associadas 2012. Retrieved from http://www.ipea.gov.brspa
dc.identifier.bibliographicCitationKuczman, O., Gueri, M. V. D., De Souza, S. N. M., Schirmer, W. N., Alves, H. J., Secco, D., Hernandes, F. B. (2018). Food waste anaerobic digestion of a popular restaurant in Southern Brazil. Journal of Cleaner Production, 196, 382–389. https://doi.org/10.1016/j.jclepro.2018.05.282spa
dc.identifier.bibliographicCitationLeipold, S., & Petit-Boix, A. (2018). The circular economy and the bio-based sector - Perspectives of European and German stakeholders. Journal of Cleaner Production, 201, 1125–1137. https://doi.org/10.1016/j.jclepro.2018.08.019spa
dc.identifier.bibliographicCitationMartinez-Hernandez, E., & Samsatli, S. (2017). Biorefineries and the food, energy, water nexus — towards a whole systems approach to design and planning. Current Opinion in Chemical Engineering, Vol. 18, pp. 16–22. https://doi.org/10.1016/j.coche.2017.08.003spa
dc.identifier.bibliographicCitationMirmohamadsadeghi, S., Karimi, K., Tabatabaei, M., & Aghbashlo, M. (2019). Biogas production from food wastes: A review on recent developments and future perspectives. Bioresource Technology Reports, 7(March), 100202. https://doi.org/10.1016/j.biteb.2019.100202spa
dc.identifier.bibliographicCitationPramanik, S. K., Suja, F. B., Zain, S. M., & Pramanik, B. K. (2019). The anaerobic digestion process of biogas production from food waste: Prospects and constraints. Bioresource Technology Reports, 8, 100310. https://doi.org/10.1016/j.biteb.2019.100310spa
dc.identifier.bibliographicCitationRao, P. V., Baral, S. S., Dey, R., & Mutnuri, S. (2010). Biogas generation potential by anaerobic digestion for sustainable energy development in India. Renewable and Sustainable Energy Reviews, 14(7), 2086–2094. https://doi.org/10.1016/j.rser.2010.03.031spa
dc.identifier.bibliographicCitationSantos, T. M., Alonso, M. V., Oliet, M., Domínguez, J. C., Rigual, V., & Rodriguez, F. (2018). Effect of autohydrolysis on Pinus radiata wood for hemicellulose extraction. Carbohydrate Polymers, 194, 285–293. https://doi.org/10.1016/j.carbpol.2018.04.010spa
dc.identifier.bibliographicCitationSheng, K., Chen, X., Pan, J., Kloss, R., Wei, Y., & Ying, Y. (2013). Effect of ammonia and nitrate on biogas production from food waste via anaerobic digestion. Biosystems Engineering, 116(2), 205–212. https://doi.org/10.1016/j.biosystemseng.2013 2.08.005spa
dc.identifier.bibliographicCitationSrisowmeya, G., Chakravarthy, M., & Nandhini Devi, G. (2019). Critical considerations in twostage anaerobic digestion of food waste – A review. Renewable and Sustainable Energy Reviews, 109587. https://doi.org/10.1016/j.rser.2019.109587spa
dc.identifier.bibliographicCitationWoźniak, E., & Twardowski, T. (2018, January 25). The bioeconomy in Poland within the context of the European Union. New Biotechnology, Vol. 40, pp. 96–102. https://doi.org/10.1016/j.nbt.2017.06.003spa
dc.identifier.bibliographicCitationYin, J., Wang, K., Yang, Y., Shen, D., Wang, M., & Mo, H. (2014). Improving production of volatile fatty acids from food waste fermentation by hydrothermal pretreatment. Bioresource Technology, 171, 323–329. https://doi.org/10.1016/j.biortech.2014.08.062spa
dc.identifier.bibliographicCitationYirong, C., Zhang, W., Heaven, S., & Banks, C. J. (2017). Influence of ammonia in the anaerobic digestion of food waste. Journal of Environmental Chemical Engineering, 5(5), 5131–5142. https://doi.org/10.1016/j.jece.2017.09.043spa
dc.identifier.bibliographicCitationYong, Z., Dong, Y., Zhang, X., & Tan, T. (2015). Anaerobic co-digestion of food waste and straw for biogas production. Renewable Energy, 78, 527–530. https://doi.org/10.1016/j.renene.2015.01.033spa
dc.identifier.bibliographicCitationZhang, C., Su, H., Baeyens, J., & Tan, T. (2014). Reviewing the anaerobic digestion of food waste for biogas production. Renewable and Sustainable Energy Reviews, Vol. 38, pp. 383–392. https://doi.org/10.1016/j.rser.2014.05.038spa
dc.identifier.instnameinstname:Universidad Antonio Nariñospa
dc.identifier.reponamereponame:Repositorio Institucional UANspa
dc.identifier.repourlrepourl:https://repositorio.uan.edu.co/spa
dc.identifier.urihttp://repositorio.uan.edu.co/handle/123456789/2094
dc.language.isospaspa
dc.publisherUniversidad Antonio Nariñospa
dc.publisher.campusBogotá - Surspa
dc.publisher.facultyFacultad de Ingeniería Ambientalspa
dc.publisher.programIngeniería Ambientalspa
dc.rightsAcceso abierto
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAttribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subjectResiduos alimenticioses_ES
dc.subjectPretratamientoes_ES
dc.subjectHidrotérmicoes_ES
dc.subjectAcidificaciónes_ES
dc.subject.keywordFood wastees_ES
dc.subject.keywordHydrothermales_ES
dc.subject.keywordPretreatmentes_ES
dc.subject.keywordAcidificationes_ES
dc.titleEvaluación del pretratamiento térmico de residuos alimenticios, para la producción de biogás mediante digestión anaerobiaes_ES
dc.typeTrabajo de grado (Pregrado y/o Especialización)spa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
Files
Original bundle
Now showing 1 - 2 of 2
thumbnail.default.alt
Name:
2020LeidyKatherineCastroLópez.pdf
Size:
1.01 MB
Format:
Adobe Portable Document Format
Description:
Trabajo de grado
thumbnail.default.alt
Name:
2020AutorizacióndeAutores.pdf
Size:
334 KB
Format:
Adobe Portable Document Format
Description:
Autorización de Autores
License bundle
Now showing 1 - 1 of 1
thumbnail.default.alt
Name:
license.txt
Size:
2.65 KB
Format:
Item-specific license agreed upon to submission
Description: