Caracterización de Potenciales EEG Olfativos en Personas Saludables

dc.contributor.advisorGutiérrez Gutiérrez, Edgar Willingtonspa
dc.contributor.advisorSarmiento Vela, Jhon Freddyspa
dc.contributor.authorLosada Cerquera, Danielaspa
dc.creator.cedula1061818044spa
dc.date.accessioned2021-03-10T20:06:15Z
dc.date.available2021-03-10T20:06:15Z
dc.date.issued2020-11-24spa
dc.descriptionPropiaes_ES
dc.description.abstractThe EEG signals are currently a challenge because associations have been found with olfactory alterations that can be an indicator of neurodegenerative diseases, current analyses are performed on qualitative olfactory patterns and there are no measures that ensure that there is a direct relationship between smell and alterations in medical terms. Biomedical engineering sees the need to bring these patterns to quantitative analysis, which is why the use of EEG signal analysis becomes a way to approach this complex problem. One of the strategies that have been used until now is based on the clinical diagnosis and trying to identify these alterations before some kind of problem occurs and that serves as a non-invasive indicator of a neurodegenerative disorder, it is important to use EEG signals as a support in the clinical diagnosis providing more precision in quantitative terms. The present research proposes the use of the theta wave obtained from the electroencephalographic signal of healthy people as an alternative to approach in a quantitative and qualitative way observing the changes in the brain activity from the analysis in time, frequency with the FFT, and PSD applying repeated inter- and intra-subject measures, to identify changes in the signal energy. This work is carried out from a database of 10 subjects collected in Brazil, in which the Sniffin Sticks test was applied, from which mint and lemon smells were taken and analyzed in the F3 and F4 electrode in the frontotemporal region. The most significant results that were obtained, in relation to the filters applied, the way in which the theta wave manifests itself in the frequency domain, the manifestation of PSD differentiating rest vs. odor and the significant differences that exist depending on the existence or not of rest and odor, were identified 7 categories in which patterns can be characterized in relation to the behavior of rest vs. odor for channels F3 and F4.eng
dc.description.abstractLas señales EEG en la actualidad son un desafío debido a que se han encontrado asociaciones a alteraciones de tipo olfativo que pueden ser indicador de enfermedades neurodegenerativas, los análisis actuales se realizan a patrones olfativos de tipo cualitativo y no existen medidas que permitan asegurar que exista una relación directa entre el olfato y las alteraciones en términos médicos, desde la ingeniería biomédica se ve la necesidad de llevar estos patrones al análisis cuantitativo, es por esto que el uso del análisis de las señales EEG se convierte en un camino para acercarse a este problema tan complejo. Una de las estrategias que se han utilizado hasta ahora está basado en el diagnóstico clínico e intentar identificar estas alteraciones antes de que ocurra algún tipo de problema y que sirva como indicador no invasivo de un trastorno neurodegenerativo, es importante utilizar señales EEG como apoyo en el diagnóstico clínico aportando mayor precisión en términos cuantitativos. La presente investigación propone el uso de la onda theta obtenida a partir de la señal electroencefalográfica de personas saludables como una alternativa para acercarnos de manera cuantitativa y cualitativa observando los cambios en la actividad cerebral a partir del análisis en el tiempo, frecuencia con la FFT, y PSD aplicando medidas repetidas inter-sujeto e intra-sujeto, para identificar cambios en la energía de la señal. Este trabajo se realiza a partir de una base de datos de 10 sujetos colectada en Brasil, en los cuales se aplicó el test Sniffin Sticks, de los cuales se tomaron los olores de menta y limón y se analizaron en el electrodo F3 y F4 en la región frontotemporal. Los resultados más significativos que se obtuvieron, en relación a los filtros aplicados, la forma en la que la onda theta se manifiesta en el dominio de la frecuencia, la manifestación del PSD diferenciando el reposo vs el olor y las diferencias significativas que hay en función de la existencia o no entre el reposo y el olor, se identificaron 7 categorías en las que se puede caracterizar patrones en relación al comportamiento del reposo vs olor para los canales F3 y F4.spa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero(a) Biomédico(a)spa
dc.description.funderFinanciación propia 2'600.000es_ES
dc.description.notesPresencialspa
dc.identifier.bibliographicCitationAllison, T., & Goff, W. R. (1967). Human cerebral evoked responses to odorous stimuli. Electroencephalography and Clinical Neurophysiology, 23(6), 558–560. https://doi.org/10.1016/0013-4694(67)90022-3spa
dc.identifier.bibliographicCitationArrufat-pié, E., Estévez-báez, M., Estévez-carreras, J. M., Curbelo, M., Leisman, G., León, C. B., & Fajardo, M. (2020). Analysis in the frequency domain of multicomponent oscillatory modes of the human electroencephalogram extracted with multivariate empirical mode decomposition.spa
dc.identifier.bibliographicCitationAt, M. E. T. H. O. D. S. A. N. D. A. P. P. L. I. C. I. O. N. S. (2014). Methods and applications.spa
dc.identifier.bibliographicCitationBonfils, P. (2008). Fisiología, exploración y trastornos de la olfacción. EMC - Otorrinolaringología, 37(1), 1–13. https://doi.org/10.1016/s1632-3475(08)70311-4spa
dc.identifier.bibliographicCitationBioMed Research International. (2018). Retracted: Analysis of the Influence of Complexity and Entropy of Odorant on Fractal Dynamics and Entropy of EEG Signal. BioMed Research International, 2018, 2358107. https://doi.org/10.1155/2018/2358107spa
dc.identifier.bibliographicCitationCarrillo V, B., Carrillo A, V., Astorga V, A., & Hormachea F, D. (2017). Diagnóstico en la patología del olfato: Revisión de la literatura. Revista de Otorrinolaringología y Cirugía de Cabeza y Cuello, 77(3), 351–360. https://doi.org/10.4067/s0718-48162017000300351spa
dc.identifier.bibliographicCitationChambers, S. S. and J. A. (2007). EEG SIGNAL PROCESSING. 2007.spa
dc.identifier.bibliographicCitationChaná, P., & Júri, C. (2007). Déficit de la olfacción en la enfermedad de Parkinson: Un síntoma a considerar en la práctica clínica. Revista Médicas Uis, 20(3).spa
dc.identifier.bibliographicCitationCofré, A. R. (2015). Alteraciones del olfato asociadas a hipogonadismo hipogonadotrófico. 1, 49–54. http://faso.org.ar/revistas/2015/2/8.pdfspa
dc.identifier.bibliographicCitationDamm, M. (2007). [Diagnosis of olfactory disorders--clinical standards and research]. Laryngo- rhino- otologie, 86(8), 565–572. https://doi.org/10.1055/s-2007-966532spa
dc.identifier.bibliographicCitationDe Rezende Pinna, F., Ctenas, B., Weber, R., Saldiva, P. H., & Voegels, R. L. (2013). Olfactory neuroepithelium in the superior and middle turbinates: Which is the optimal biopsy site? International Archives of Otorhinolaryngology, 17(2), 131–138. https://doi.org/10.7162/S1809-97772013000200004spa
dc.identifier.bibliographicCitationDiaz, A. (2017). The registrability of olfactory signs in Colombia , a trademark possibility for the 21st century. 13(1), 45–70.spa
dc.identifier.bibliographicCitationEtchepareborda, M. C., Mulas, F., Gandía, R., Abad-Mas, L., Moreno, F., & Díaz-Lucero, A. (2006). Técnicas de evaluación funcional de los trastornos del neurodesarrollo. Revista de Neurologia, 42(SUPPL. 2). https://doi.org/10.33588/rn.42s02.2005829spa
dc.identifier.bibliographicCitationFornazieri, M. A., De Rezende Pinna, F., Bezerra, T. F. P., Antunes, M. B., & Voegels, R. L. (2010). Applicability of the University of Pennsylvania Smell Identification Test (SIT) in Brazilians: Pilot study. Brazilian Journal of Otorhinolaryngology, 76(6), 695–699. https://doi.org/10.1590/s1808-86942010000600004spa
dc.identifier.bibliographicCitationFrasnelli, J., Fark, T., Lehmann, J., Gerber, J., & Hummel, T. (2013). Brain structure is changed in congenital anosmia. NeuroImage, 83, 1074–1080. https://doi.org/10.1016/j.neuroimage.2013.07.070spa
dc.identifier.bibliographicCitationFuentes Hitos, D., & Antonio Cruces Álvarez Profesor Titular, S. (n.d.). Técnicas de Procesado de Señales Cerebrales.spa
dc.identifier.bibliographicCitationFulbright, R. K., Skudlarski, P., Lacadie, C. M., Warrenburg, S., Bowers, A. A., Gore, J. C., & Wexler, B. E. (1998). Functional MR imaging of regional brain responses to pleasant and unpleasant odors. American Journal of Neuroradiology, 19(9), 1721–1726.spa
dc.identifier.bibliographicCitationGarnsey, S. M. (1993). Event-related brain potentials in the study of language: An introduction. Language and Cognitive Processes, 8(4), 337–356. https://doi.org/10.1080/01690969308407581spa
dc.identifier.bibliographicCitationGiró Miranda (coord.), J. (2005). Envejecimiento, salud y dependencia. In Biblioteca de Investigación (Vol. 42, pp. 1–207). https://dialnet.unirioja.es/descarga/libro/6366.pdfspa
dc.identifier.bibliographicCitationHadley, K., Orlandi, R. R., & Fong, K. J. (2004). Basic anatomy and physiology of olfaction and taste. Otolaryngologic Clinics of North America, 37(6 SPEC.ISS.), 1115–1126. https://doi.org/10.1016/j.otc.2004.06.009spa
dc.identifier.bibliographicCitationHemakom, A., Goverdovsky, V., Looney, D., & Mandic, D. P. (2016). Adaptive-projection intrinsically transformed multivariate empirical mode decomposition in cooperative brain-computer interface applications. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065). https://doi.org/10.1098/rsta.2015.0199spa
dc.identifier.bibliographicCitationHoekman, P. K., Houlton, J. J., & Seiden, A. M. (2014). The utility of magnetic resonance imaging in the diagnostic evaluation of idiopathic olfactory loss. Laryngoscope, 124(2), 365–368. https://doi.org/10.1002/lary.24248spa
dc.identifier.bibliographicCitationHoffman, H. J., Rawal, S., Li, C. M., & Duffy, V. B. (2016). New chemosensory component in the U.S. National Health and Nutrition Examination Survey (NHANES): first-year results for measured olfactory dysfunction. Reviews in Endocrine and Metabolic Disorders, 17(2), 221–240. https://doi.org/10.1007/s11154-016-9364-1spa
dc.identifier.bibliographicCitationHu, L., & Zhang, Z. (2019). EEG Signal Processing and Feature.spa
dc.identifier.bibliographicCitationHuart, C., Legrain, V., Hummel, T., Rombaux, P., & Mouraux, A. (2012). Time-frequency analysis of chemosensory event-related potentials to characterize the cortical representation of odors in humans. PLoS ONE, 7(3). https://doi.org/10.1371/journal.pone.0033221spa
dc.identifier.bibliographicCitationHudson, L., Consuelo Silva, M., Núñez, J. C., Gómez, R., & Venegas-Francke, P. (2012). Evaluation of olfaction in healthy subjects using the sniffing sticks battery. Revista Medica de Chile, 140(4), 442–446. https://doi.org/10.4067/S0034-98872012000400004spa
dc.identifier.bibliographicCitationHummel, T., Knecht, M., & Kobal, G. (1996). Peripherally obtained electrophysiological responses to olfactory stimulation in man: Electro-olfactograms exhibit a smaller degree of desensitization compared with subjective intensity estimates. Brain Research, 717(1–2), 160–164. https://doi.org/10.1016/0006-8993(96)00094-7spa
dc.identifier.bibliographicCitationHummel, T., Kobal, G., Gudziol, H., & Mackay-Sim, A. (2007). Normative data for the “Sniffin’’ Sticks" including tests of odor identification, odor discrimination, and olfactory thresholds: An upgrade based on a group of more than 3,000 subjects.” European Archives of Oto-Rhino-Laryngology, 264(3), 237–243. https://doi.org/10.1007/s00405-006-0173-0spa
dc.identifier.bibliographicCitationJohansson, M. (2012). The Hilbert Transform. 473–503. https://doi.org/10.1002/9781118032428.ch13spa
dc.identifier.bibliographicCitationJosé M~ Pérez Serrano. (1998). MARCADORES NEUROFISIOLOGICOS PRECOCES EN EL DIAGNÓSTICO DE LA ENFERMEDAD DE ALZHEIMER. Medicina, Facultad D E.spa
dc.identifier.bibliographicCitationKayser, J., Tenke, C. E., Kroppmann, C. J., Alschuler, D. M., Ben-David, S., Fekri, S., Bruder, G. E., & Corcoran, C. M. (2013). Olfaction in the psychosis prodrome: Electrophysiological and behavioral measures of odor detection. International Journal of Psychophysiology, 90(2), 190–206. https://doi.org/10.1016/j.ijpsycho.2013.07.003spa
dc.identifier.bibliographicCitationKlemm, W. R., Lutes, S. D., Hendrix, D. V., & Warrenburg, S. (1992). Topographical EEG maps of human responses to odors. Chemical Senses, 17(3), 347–361. https://doi.org/10.1093/chemse/17.3.347spa
dc.identifier.bibliographicCitationKobal, G., Klimek, L., Wolfensberger, M., Gudziol, H., Temmel, A., Owen, C. M., Seeber, H., Pauli, E., & Hummel, T. (2000). Multicenter investigation of 1,036 subjects using a standardized method for the assessment of olfactory function combining tests of odor identification, odor discrimination, and olfactory thresholds. European Archives of Oto-Rhino-Laryngology, 257(4), 205–211. https://doi.org/10.1007/s004050050223spa
dc.identifier.bibliographicCitationKotecha, A. M., Corrêa, A. D. C., Fisher, K. M., & Rushworth, J. V. (2018). Olfactory dysfunction as a global biomarker for sniffing out Alzheimer’s disease: A meta-analysis. Biosensors, 8(2), 1–13. https://doi.org/10.3390/bios8020041spa
dc.identifier.bibliographicCitationKrbot Skoric, M., Adamec, I., Hajnsek, S., & Habek, M. (2014). P863: EEG response to different odors in healthy individuals: a promising tool for objective assessment of olfactory disorders. Clinical Neurophysiology, 125(2014), S273. https://doi.org/10.1016/s1388-2457(14)50896-6spa
dc.identifier.bibliographicCitationKrbot Skorić, M., Adamec, I., Jerbić, A. B., Gabelić, T., Hajnšek, S., & Habek, M. (2015a). Electroencephalographic Response to Different Odors in Healthy Individuals: A Promising Tool for Objective Assessment of Olfactory Disorders. Clinical EEG and Neuroscience, 46(4), 370–376. https://doi.org/10.1177/1550059414545649spa
dc.identifier.bibliographicCitationLópez, S., & Rodríguez, G. (n.d.). Evaluación del Desempeño de la Transformada Ondícula y de Hilbert-Huang en la detección de los signos de somnolencia en el Electroencefalograma.spa
dc.identifier.bibliographicCitationLorig, T. S. (2000). The application of electroencephalographic techniques to the study of human olfaction: A review and tutorial. International Journal of Psychophysiology, 36(2), 91–104. https://doi.org/10.1016/S0167-8760(99)00104-Xspa
dc.identifier.bibliographicCitationLorig, T. S., Sapp, A. C., Campbell, J., & Cain, W. S. (1993). Event-related potentials to odor stimuli. Bulletin of the Psychonomic Society, 31(2), 131–134. https://doi.org/10.3758/BF03334161spa
dc.identifier.bibliographicCitationLorig, T. S., & Schw Artz, G. E. (1988). Brain and odor: 1. Alteration of human EEG by odor administration. In Psychobiology /988 (Issue 3).spa
dc.identifier.bibliographicCitationLorig, T. S. (1999). On the similarity of odor and language perception. Neuroscience and Biobehavioral Reviews, 23(3), 391–398. https://doi.org/10.1016/S0149-7634(98)00041-4spa
dc.identifier.bibliographicCitationLorig, T. S., Herman, K. B., Schwartz, G. E., & Cain, W. S. (1990). EEG activity during administration of low-concentration odors. Bulletin of the Psychonomic Society, 28(5), 405–408. https://doi.org/10.3758/BF03334051spa
dc.identifier.bibliographicCitationM, K. S., Adamec, I., Jerbić, A. B., Gabelić, T., & Hajnšek, S. (2015). Središnja medicinska knjižnica. 46.spa
dc.identifier.bibliographicCitationMartin, G. N. (1998). Human electroencephalographic (EEG) response to olfactory stimulation: Two experiments using the aroma of food. International Journal of Psychophysiology, 30(3), 287–302. https://doi.org/10.1016/S0167-8760(98)00025-7spa
dc.identifier.bibliographicCitationMartínez, J. C., Puebla, J. M. M., & Antolín, J. a J. (2008). Patología de la olfacción. olfatometría. manejo de los problemas olfativos. 1–14.spa
dc.identifier.bibliographicCitationMasaoka, Y., Harding, I. H., Koiwa, N., Yoshida, M., Harrison, B. J., Lorenzetti, V., Ida, M., Izumizaki, M., Pantelis, C., & Homma, I. (2014a). The neural cascade of olfactory processing: A combined fMRI-EEG study. Respiratory Physiology and Neurobiology, 204, 71–77. https://doi.org/10.1016/j.resp.2014.06.008spa
dc.identifier.bibliographicCitationMasaoka, Y., Harding, I. H., Koiwa, N., Yoshida, M., Harrison, B. J., Lorenzetti, V., Ida, M., Izumizaki, M., Pantelis, C., & Homma, I. (2014b). The neural cascade of olfactory processing: A combined fMRI-EEG study. Respiratory Physiology and Neurobiology, 204, 71–77. https://doi.org/10.1016/j.resp.2014.06.008spa
dc.identifier.bibliographicCitationMcgaugh, J. L., Fentress, J. C., Hegman, J. P., Callaway, E., Tueting, P., Editors, S. H. K., Callaway, E., & Tueting, P. (1978). BEHAVIORAL BIOLOGY sponses : A Psychophysiological Approach EVENT-RELATED BRAIN POTENTIALS IN MAN EDITED BY.spa
dc.identifier.bibliographicCitationMedina, B., Sierra, J. E., & Ulloa, A. B. (2018). Técnicas de extracción de características de señales EEG en la imaginación de movimiento para sistemas BCI Extraction techniques of EEG signals characteristics in motion imagination for BCI systems.Espacios, 39(22), 36–48. https://www.revistaespacios.com/a18v39n22/18392236.htmlspa
dc.identifier.bibliographicCitationMin, B. C., Jin, S. H., Kang, I. H., Lee, D. H., Kang, J. K., Lee, S. T., & Sakamoto, K. (2003). Analysis of mutual information content for EEG responses to odor stimulation for subjects classified by occupation. Chemical Senses, 28(9), 741–749. https://doi.org/10.1093/chemse/bjg066spa
dc.identifier.bibliographicCitationMiranda C., M., & Pérez J., C. (2006). ¿Por qué evaluar el olfato? y ¿cómo evaluarlo?: implicancias en el diagnóstico de la Enfermedad de Parkinson: aplicación de un práctico test en población adulta sana y con síntomas parkinsonianos. Rev. Méd. Clín. Condes, 17(3), 120–122.spa
dc.identifier.bibliographicCitationMuirhead, N., Benjamin, E., & Saleh, H. (2013). Is the University of Pennsylvania Smell Identification Test (UPSIT) valid for the UK population? Otorhinolaryngologist, 6(2), 99–103.spa
dc.identifier.bibliographicCitationMURAO, S., YOTO, A., & YOKOGOSHI, H. (2013). Effect of Smelling Green Tea on Mental Status and EEG Activity. International Journal of Affective Engineering, 12(2), 37–43. https://doi.org/10.5057/ijae.12.37spa
dc.identifier.bibliographicCitationNeurorinología, U. De, Hospital, N., Carlos, M., Pieruzzini, D. R., Santana, D. Y., Loreto, D. A., Pérez, D. M., Riera, D. A., Primera, D. M., & Sánchez, D. A. (2012). Prevalencia de trastornos olfatorios en niños Hospital Militar “ Dr . Carlos Arvelo ”. Caracas-Venezuela. 49–53.spa
dc.identifier.bibliographicCitationNorden Huang, S. S. (2014). Hilbert–Huang Transform and Its Applications.spa
dc.identifier.bibliographicCitationNovo-Olivas, C., Chacón Guitiérrez, L., & Alberto Barradas Bribiesca, J. (2010). Mapeo Electroencefalográfico y Neurofeedback. September, 371–412.spa
dc.identifier.bibliographicCitationNunez, P. L., & Srinivasan, R. (2009). Electric Fields of the Brain: The neurophysics of EEG. In Electric Fields of the Brain: The neurophysics of EEG. https://doi.org/10.1093/acprof:oso/9780195050387.001.0001spa
dc.identifier.bibliographicCitationOchoa, A., Maciel, M., Estrada, F., Díaz, C., Félix, R., & Alvarez, J. (2010). Sistema de adquisición y procesamiento de señales electrocardiográfícas. CISCI 2010 - Novena Conferencia Iberoamericana En Sistemas, Cibernetica e Informatica, 7to Simposium Iberoamericano En Educacion, Cibernetica e Informatica, SIECI 2010 - Memorias, 3(March 2015), 247–252.spa
dc.identifier.bibliographicCitationOostenveld, R., & Praamstra, P. (2001). The five percent electrode system for high-resolution EEG and ERP measurements. Clinical Neurophysiology, 112(4), 713–719. https://doi.org/10.1016/S1388-2457(00)00527-spa
dc.identifier.bibliographicCitationPino, Y. D. (2014). “Estudio sobre los diferentes equipos de EEG existentes en la provincia.spa
dc.identifier.bibliographicCitationPinto, J. M., Wroblewski, K. E., Kern, D. W., Schumm, L. P., & McClintock, M. K. (2014). Olfactory dysfunction predicts 5-year mortality in older adults. PLoS ONE, 9(10). https://doi.org/10.1371/journal.pone.0107541spa
dc.identifier.bibliographicCitationQuarmley, M., Moberg, P. J., Mechanic-Hamilton, D., Kabadi, S., Arnold, S. E., Wolk, D.A., & Roalf, D. R. (2017). Odor Identification Screening Improves Diagnostic Classification in Incipient Alzheimer’s Disease. Journal of Alzheimer’s Disease, 55(4), 1497–1507. https://doi.org/10.3233/JAD-160842spa
dc.identifier.bibliographicCitationRahayel, S., Frasnelli, J., & Joubert, S. (2012). The effect of Alzheimer’s disease and Parkinson’s disease on olfaction: A meta-analysis. Behavioural Brain Research, 231(1), 60–74. https://doi.org/10.1016/j.bbr.2012.02.047spa
dc.identifier.bibliographicCitationRibeiro, J. C., Simões, J., Silva, F., Silva, E. D., Hummel, C., Hummel, T., & Paiva, A. (2016). Cultural adaptation of the Portuguese version of the “Sniffin’’ Sticks" smell test: Reliability, validity, and normative data.” PLoS ONE, 11(2), 1–12. https://doi.org/10.1371/journal.pone.0148937spa
dc.identifier.bibliographicCitationRobles-Osorio, M. L., Corona, R., Morales, T., & Sabath, E. (2019). Enfermedad renal crónica y olfato. Nefrología, x x, 2–7. https://doi.org/10.1016/j.nefro.2019.04.009spa
dc.identifier.bibliographicCitationRombaux, P., Huart, C., & Mouraux, A. (2016). Fisiología y exploración de los trastornos de la olfacción. EMC - Otorrinolaringología, 45(4), 1–12. https://doi.org/https://doi.org/10.1016/S1632-3475(16)80843-7spa
dc.identifier.bibliographicCitationRoy M. Howard. (2002). Principles of Random Signal Analysis and L ow Noise Design T he Power Spectral Density and its Applications.spa
dc.identifier.bibliographicCitationRumeau, C., Nguyen, D. T., & Jankowski, R. (2016). How to assess olfactory performance with the Sniffin’ Sticks test®. European Annals of Otorhinolaryngology, Head and Neck Diseases, 133(3), 203–206. https://doi.org/10.1016/j.anorl.2015.08.004spa
dc.identifier.bibliographicCitationSanders, C., Diego, M., Fernandez, M., Field, T., Hernandez-Reif, M., & Roca, A. (2002). EEG asymmetry responses to lavender and rosemary aromas in adults and infants. International Journal of Neuroscience, 112(11), 1305–1320. https://doi.org/10.1080/00207450290158214spa
dc.identifier.bibliographicCitationSchriever, V. A., Han, P., Weise, S., Hösel, F., Pellegrino, R., & Hummel, T. (2017). Time frequency analysis of olfactory induced EEG-power change. PLoS ONE, 12(10). https://doi.org/10.1371/journal.pone.0185596spa
dc.identifier.bibliographicCitationSowndhararajan, K., Cho, H., Yu, B., & Kim, S. (2015). Effect of olfactory stimulation of isomeric aroma compounds, (+)-limonene and terpinolene on human electroencephalographic activity. European Journal of Integrative Medicine, 7(6), 561–566. https://doi.org/10.1016/j.eujim.2015.08.006spa
dc.identifier.bibliographicCitationSowndhararajan, K., & Kim, S. (2016). Influence of fragrances on humanspa
dc.identifier.bibliographicCitationScott Miller, D. C. (2004). Probability and random processes With Applications to Signal Processing and Communications.spa
dc.identifier.bibliographicCitationSuárez Nieto, C., & Gil-Carcedo, L. M. (2007). Tratado de otorrinolaringología y cirugía de cabeza y cuello. 4 v.spa
dc.identifier.bibliographicCitationTang, N., Pública, S., Msp, I. I., Miranda, C., Casos, E. D. E. L. O. S., En, D. E. C., John, L., ثبثبثب , ب ., California, B., Pérez Gómez, B., Rodríguez Artalejo, F., Villar Álvarez, F.,López-Abente, G., Imaz Iglesia, I., Jiménez Jiménez, D., Catalán Castilla, J., González Enríquez, J., Martín Moreno, J. M., Banegas Banegas, J. R., … Dizaje, O. D. E. A. (2018). Métodos de análisis cuantitativo de EEG y aplicaciones clínicas. In ثثثثثث : Vol. ث ثثثث (Issue ثق ثقثقثق ).spa
dc.identifier.bibliographicCitationVasco, V., & Guevara, M. (2020). Articulo Original Análisis de las familias olfativas y su relación con las ondas electroencefalográficas en función del género Analysis of olfactory families and their relationship with electroencephalographic according to gender. 7, 3–11.spa
dc.identifier.bibliographicCitationWalla, P., Duregger, C., Deecke, L., & Dal-Bianco, P. (2011). Dysfunctional incidental olfaction in mild cognitive impairment (MCI): An electroencephalography (EEG) study. Brain Sciences, 1(1), 3–15. https://doi.org/10.3390/brainsci1010003spa
dc.identifier.bibliographicCitationXu, J., Yazicioglu, R. F., Van Hoof, C., & Makinwa, K. (2018). Low Power Active Electrode ICs for Wearable EEG Acquisition. https://doi.org/10.1007/978-3-319-74863-4spa
dc.identifier.bibliographicCitationAttwood, H. L. (1989). Essentials of Neurophysiology. B.C. Decker.spa
dc.identifier.bibliographicCitationC., H. (1975). Evaluating function and disorders of smell. . Arch. Otorhinolryngol, 210(1):67-164.spa
dc.identifier.bibliographicCitationHudson, R. &. (1995). PROCESAMIENTO CENTRAL DE LA INFORMACION OLFATORIA. Neurobiología de los sistemas sensoriales, 119.spa
dc.identifier.bibliographicCitationJ., D. H. (1999; ). lfatometría en la clínica diaria. Acta Otorrinolaringol Esp,, 50: 40-9.spa
dc.identifier.bibliographicCitationJasper, H. H. (1958). The ten-twenty electrode system of the International Federation." Electroencephalogr. Clin. Neurophysiol, 370-375.spa
dc.identifier.bibliographicCitationLicer, D. H. (2006). Olfación. En: Sarandeses García A. Rinología. Fisiopatología. Técnicas de exploración. . Barcelona: Ars Medica, 95-109.spa
dc.identifier.bibliographicCitationSmith DV, D. H. (New York 1992.). Primary Olfactory Disorders: Anosmia, Hyposmia and Dysosmia. In: Science of Olfaction. Serby MJ, Chobor KL (Eds), Springer-Verlag, , p.439.spa
dc.identifier.instnameinstname:Universidad Antonio Nariñospa
dc.identifier.reponamereponame:Repositorio Institucional UANspa
dc.identifier.repourlrepourl:https://repositorio.uan.edu.co/spa
dc.identifier.urihttp://repositorio.uan.edu.co/handle/123456789/3151
dc.language.isospaspa
dc.publisherUniversidad Antonio Nariñospa
dc.publisher.campusPopayán - Alto Caucaspa
dc.publisher.facultyFacultad de Ingeniería Mecánica, Electrónica y Biomédicaspa
dc.publisher.programIngeniería Biomédicaspa
dc.rightsAcceso abierto
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subjectTransformada de Fourieres_ES
dc.subjectPotenciales EEG olfativoses_ES
dc.subjectPSD olfativo onda Thetaes_ES
dc.subjectANOVA de medidas repetidases_ES
dc.subjectTest Sniffin Stickses_ES
dc.subjectCaracterización Onda Theta.es_ES
dc.subject.keywordFourier transformes_ES
dc.subject.keywordOlfactory EEG potentialses_ES
dc.subject.keywordTheta wave olfactory PSDes_ES
dc.subject.keywordRepeated measures ANOVAes_ES
dc.subject.keywordSniffin Sticks Testes_ES
dc.subject.keywordTheta Wave Characterization.es_ES
dc.titleCaracterización de Potenciales EEG Olfativos en Personas Saludableses_ES
dc.typeTrabajo de grado (Pregrado y/o Especialización)spa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
Files
Original bundle
Now showing 1 - 2 of 2
thumbnail.default.alt
Name:
2020_DanielaLosada
Size:
5.74 MB
Format:
Adobe Portable Document Format
Description:
Trabajo de grado
thumbnail.default.alt
Name:
2020_DanielaLosada_Autorización
Size:
599.36 KB
Format:
Adobe Portable Document Format
Description:
Autorización de autores
License bundle
Now showing 1 - 1 of 1
thumbnail.default.alt
Name:
license.txt
Size:
3.2 KB
Format:
Item-specific license agreed upon to submission
Description: