Identificación de sitios alostéricos en proteínas de Homo sapiens que interactúan con la molécula de ATP mediante la herramienta Deacon Active Site Profiler (DASP3)

dc.contributor.advisorDuarte González, Mario Enriquespa
dc.contributor.authorGonzález Rosas, Adriana Camilaspa
dc.date.accessioned2021-03-02T15:15:48Z
dc.date.available2021-03-02T15:15:48Z
dc.date.issued2020-07-21spa
dc.description.abstractActive proteins and allosteric sites are distinguished in proteins. The latter have their binding site within the enzyme in a different place from the active site. Its importance lies in the contribution it makes in the inhibition and / or activation of its biological function, this, through molecules (ligands) that act as allosteric modulators, being a basis for the design of drugs, since they provide fewer adverse effects than traditional ones. (active regulators). One of the main molecules that can act as an allosteric regulator is adenosine triphosphate (ATP), since it is essential for obtaining cellular energy. Among the public databases that have information on the structure of proteins, is the National Center for Biotechnology Information (NCBI), there are 1,364,990 proteins in Homo sapiens, some of which have not been studied and therefore it is not known if there is an allosteric site, nor its molecular position. In the work that follows, the creation of an allosteric site profile (ASP) is presented, from three proteins and with the help of the Deacon Active Site Profiler 3 tool (DASP3), which allows identify active sites by creating an active site profile; these proteins, through the reviewed literature, are known allosteric site in interaction with the ATP ligand.eng
dc.description.abstractEn las proteínas se distinguen los sitios activos y los sitios alostéricos. Estos últimos poseen su sitio de unión dentro de la enzima en un lugar diferente al del sitio activo. Su importancia radica en la contribución que realiza en la inhibición y/o activación de su función biológica, esto, mediante moléculas (ligandos) que actúan como moduladores alostéricos, siendo una base para el diseño de fármacos, pues proporcionan menos efectos adversos que los tradicionales (reguladores activos). Una de las principales moléculas que puede actuar como regulador alostérico es el adenosín trifosfato (ATP), ya que es fundamental para la obtención de energía celular. Entre las bases de datos públicas que cuentan con información sobre la estructura de las proteínas, se encuentra el National Center for Biotechnology Information (NCBI), allí existen 1’364.990 proteínas en Homo sapiens, algunas de estas no han sido estudiadas y por tanto no se conoce si existe un sitio alostérico, ni su posición molecular. En el trabajo que se desarrolla a continuación, se presenta la creación de un perfil de sitio alostérico (ASP), a partir de tres proteínas y con la ayuda de la herramienta Deacon Active Site Profiler 3 (DASP3), que permite identificar sitios activos a partir de la creación de un perfil de sitio activo; a dichas proteínas, por medio de la literatura revisada, se les conoce sitio alostérico en interacción con el ligando ATP.spa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero(a) Biomédico(a)spa
dc.description.funderCosto del proyecto $ 2’260.000. Financiación propia $ 1’010.000. Financiación UAN $ 1’250.000.es_ES
dc.description.notesPresencialspa
dc.description.sponsorshipOtrospa
dc.identifier.bibliographicCitationO Flores Herrera, E Rendón Huerta, H Riveros Rosas, A Sosa Peinado, E Vázquez Contreras, and I Velázquez López. La estructura y la visualización molecular de proteínas. Mensaje bioquímico, 29, 2005.spa
dc.identifier.bibliographicCitationDavid L Nelson, Michael M Cox, and Albert L Lehninger. Principles of biochemistry. Freeman New York, 2008.spa
dc.identifier.bibliographicCitationHN Curtis. Ns barnes biología. Editorial M´edica Panamericana, 2002.spa
dc.identifier.bibliographicCitationHomero Saénz-Suárez, Leonardo René Lareo, Carlos Oribio-Quinto, Juan Martínez Mendoza, and Aura Chávez-Zobel. Predicción computacional de estructura terciaria de las proteínas humanas hsp27, ab-cristalina y hspb8. Universitas Scientiarum, 16(1):15– 28, 2011.spa
dc.identifier.bibliographicCitationVictoria Luque Guillén. Estructura y propiedades de las proteínas, 2009.spa
dc.identifier.bibliographicCitationLuis A Chel Guerrero, Luis Corzo Ríos, and David A Betancur Ancona. Estructura y propiedades funcionales de proteínas de leguminosas. Revista de la Universidad Autónoma de Yucatán, pages 34–43, 2003.spa
dc.identifier.bibliographicCitationO Martínez Augustin and E Martínez de Victoria. Proteínas y péptidos en nutrición enteral. Nutrición Hospitalaria, 21:01–14, 2006.spa
dc.identifier.bibliographicCitationÁngel Gil and FermÍn SÁnchez de Medina Contreras. Tratado de Nutrición: Bases fisiológicas y bioquímicas de la nutrición. Acción Médica, 2005.spa
dc.identifier.bibliographicCitationMicaela Anahí Santucho Cordoba. Proteínas. Monografía, 2014.spa
dc.identifier.bibliographicCitationJesús Merino Pérez and Maria José Noriega Borge. Enzimas. universidad de cantabria, 2011.spa
dc.identifier.bibliographicCitationTrudy McKee and James R Mckee. Enzimas. In Bioqu´ımica: la base molecular de la vida, chapter 6, pages 184–226. McGraw-Hill/Interamericana,, 5 edition, 2003.spa
dc.identifier.bibliographicCitationYael Avissar, Jung Choi, Jean DeSaix, Vladimir Jurukovski, Robert Wise, Connie Rye, et al. Atp: Adenosine triphosphate. In Biology. OpenStax, 2018.spa
dc.identifier.bibliographicCitationElizabeth Lira Silva, Ricardo Jasso Chávez, and Juan Pablo Pardo Vázquez. Respuestas al problema bioquímico. REB. Revista de educación bioquímica, 33(2):68–72, 2014.spa
dc.identifier.bibliographicCitationIsmael Lares-Asseff and Francisca Trujillo-Jiménez. La farmacogenética y su importancia en la clínica. Gaceta medica de Mexico, 137(3), 2001.spa
dc.identifier.bibliographicCitationClaude Denson Pepper. National center for biotechnology information (ncbi). [citado 17 marzo 2020]. Disponible en: https://www.ncbi.nlm.nih.gov/, 1988.spa
dc.identifier.bibliographicCitationJanelle B Leuthaeuser, John H Morris, Angela F Harper, Thomas E Ferrin, Patricia C Babbitt, and Jacquelyn S Fetrow. Dasp3: identification of protein sequences belonging to functionally relevant groups. BMC bioinformatics, 17(1):458, 2016.spa
dc.identifier.bibliographicCitationRichard D Taylor, Philip J Jewsbury, and Jonathan W Essex. A review of protein-small molecule docking methods. Journal of computer-aided molecular design, 16(3):151–166, 2002.spa
dc.identifier.bibliographicCitationRuifeng Qi, Evans Boateng Sarbeng, Qun Liu, Katherine Quynh Le, Xinping Xu, Hongya Xu, Jiao Yang, Jennifer Li Wong, Christina Vorvis, Wayne A Hendrickson, et al. Allosteric opening of the polypeptide-binding site when an hsp70 binds atp. Nature structural & molecular biology, 20(7):900, 2013.spa
dc.identifier.bibliographicCitationMarta Acebro´n Garc´ıa de Eulate. Fragment based ligand discovery on Focal Adhesion Kinase. PhD thesis, Universidad Auto´noma de Madrid, 2018.spa
dc.identifier.bibliographicCitationAlejandro Reyes. ANÁLISIS FUNCIONAL DE MUTANTES PUNTUALES EN SITIOS ALOSTÉRICOS ENDO Y EXOFACIALES EN EL TRANSPORTADOR DE GLUCOSA GLUT1. PhD thesis, Universidad de Concepci´on, 2009.spa
dc.identifier.bibliographicCitationJoerg Klepper and Baerbel Leiendecker. Glut1 deficiency syndrome–2007 update. Developmental Medicine & Child Neurology, 49(9):707–716, 2007.spa
dc.identifier.bibliographicCitationRafael Lahoz-Beltr´a. Bioinform´atica: Simulaci´on, vida artificial e inteligencia artificial. Ediciones Díaz de Santos, 2010.spa
dc.identifier.bibliographicCitationVincent Le Guilloux, Peter Schmidtke, and Pierre Tuffery. Fpocket: an open source platform for ligand pocket detection. BMC bioinformatics, 10(1):168, 2009.spa
dc.identifier.bibliographicCitationJoe G Greener, Ioannis Filippis, and Michael JE Sternberg. Predicting protein dynamics and allostery using multi-protein atomic distance constraints. Structure, 25(3):546–558, 2017.spa
dc.identifier.bibliographicCitationDeclan Clarke, Anurag Sethi, Shantao Li, Sushant Kumar, Richard WF Chang, Jieming Chen, and Mark Gerstein. Identifying allosteric hotspots with dynamics: Application to inter-and intra-species conservation. Structure, 24(5):826–837, 2016.spa
dc.identifier.bibliographicCitationLeslie B Poole and Kimberly J Nelson. Distribution and features of the six classes of peroxiredoxins. Molecules and cells, 39(1):53, 2016.spa
dc.identifier.bibliographicCitationJacquelyn S Fetrow. Active site profiling to identify protein functional sites in sequences and structures using the deacon active site profiler (dasp). Current protocols in bioinformatics, 14(1):8–10, 2006.spa
dc.identifier.bibliographicCitationLaura Soito, Chris Williamson, Stacy T Knutson, Jacquelyn S Fetrow, Leslie B Poole, and Kimberly J Nelson. Prex: Peroxiredoxin classification index, a database of subfamily assignments across the diverse peroxiredoxin family. Nucleic acids research, 39(suppl 1):D332–D337, 2011.spa
dc.identifier.bibliographicCitationRyan G Huff, Ersin Bayram, Huan Tan, Stacy T Knutson, Michael H Knaggs, Allen B Richon, Peter Santago, and Jacquelyn S Fetrow. Chemical and structural diversity in cyclooxygenase protein active sites. Chemistry & biodiversity, 2(11):1533–1552, 2005.spa
dc.identifier.bibliographicCitationMaritza Rodríguez Charry. Identificación automática de sitios alostéricos en proteínas mediante la herramienta deacon active site profiler (dasp3). Trabajo integral de grado, Antonio Nariño, 2019.spa
dc.identifier.bibliographicCitationMichael McCarthy, Priyanka Prakash, and Alemayehu A Gorfe. Computational allosteric ligand binding site identification on ras proteins. Acta biochimica et biophysica Sinica, 48(1):3–10, 2016.spa
dc.identifier.bibliographicCitationAlexander L Perryman, Daniel N Santiago, Stefano Forli, Diogo Santos-Martins, and Arthur J Olson. Virtual screening with autodock vina and the common pharmacophore engine of a low diversity library of fragments and hits against the three allosteric sites of hiv integrase: participation in the sampl4 protein–ligand binding challenge. Journal of computer-aided molecular design, 28(4):429–441, 2014.spa
dc.identifier.bibliographicCitationCarlos Roca, Carlos Requena, Víctor Sebastián-Pérez, Sony Malhotra, Chris Radoux, Concepción Pérez, Ana Martinez, Juan Antonio Paez, Tom L Blundell, and Nuria E Campillo. Identification of new allosteric sites and modulators of ache through computational and experimental tools. Journal of enzyme inhibition and medicinal chemistry, 33(1):1034–1047, 2018.spa
dc.identifier.bibliographicCitationGarrett M Morris, Ruth Huey, William Lindstrom, Michel F Sanner, Richard K Belew, David S Goodsell, and Arthur J Olson. Autodock4 and autodocktools4: Automated docking with selective receptor flexibility. Journal of computational chemistry, 30(16):2785–2791, 2009.spa
dc.identifier.bibliographicCitationMarcelo Adrian Marti and Adrian Turjanski. La bioinformática estructural o la realidad virtual de los medicamentos. Química Viva, 2009.spa
dc.identifier.bibliographicCitationRuth Nussinov and Chung-Jung Tsai. The different ways through which specificity works in orthosteric and allosteric drugs. Current pharmaceutical design, 18(9):1311– 1316, 2012.spa
dc.identifier.bibliographicCitationShaoyong Lu, Shuai Li, and Jian Zhang. Harnessing allostery: a novel approach to drug discovery. Medicinal research reviews, 34(6):1242–1285, 2014.spa
dc.identifier.bibliographicCitationAlejandro Panjkovich and Xavier Daura. Exploiting protein flexibility to predict the location of allosteric sites. BMC bioinformatics, 13(1):273, 2012.spa
dc.identifier.bibliographicCitationFernanda Saldívar-González, Fernando D Prieto-Martínez, and José L Medina-Franco. Descubrimiento y desarrollo de fármacos: un enfoque computacional. Educación química, 28(1):51–58, 2017.spa
dc.identifier.bibliographicCitationCarlos Roca Magad´an. Estrategias computacionales en el desarrollo de neurofármacos: una tecnología de éxito. PhD thesis, Universidad Complutense de Madrid, 2018.spa
dc.identifier.bibliographicCitationShaoyong Lu, Mingfei Ji, Duan Ni, and Jian Zhang. Discovery of hidden allosteric sites as novel targets for allosteric drug design. Drug discovery today, 23(2):359–365, 2018.spa
dc.identifier.bibliographicCitationRuth Nussinov and Chung-Jung Tsai. The design of covalent allosteric drugs. Annual review of pharmacology and toxicology, 55:249–267, 2015.spa
dc.identifier.bibliographicCitationGerard J Tortora and Bryan Derrickson. Principios de anatomía y fisiología. Médica Panamericana,, 2013.spa
dc.identifier.bibliographicCitationW Sperl, P Jeˇsina, J Zeman, JA Mayr, L Demeirleir, Rudy VanCoster, A Pickova, H Hansikova, H Houˇst’kov´a, Z Krejˇc´ık, et al. Deficiency of mitochondrial atp synthase of nuclear genetic origin. Neuromuscular Disorders, 16(12):821–829, 2006.spa
dc.identifier.bibliographicCitationPaolo Cremonesi. L’ambiente acquoso per il trattamento di opere policrome. il prato publishing house srl, 2012.spa
dc.identifier.bibliographicCitationMarcela Ayala Aceves. Enzimas:¿ qué son y cómo funcionan? Revista Digital Universitaria, 15(12), 2017.spa
dc.identifier.bibliographicCitationFrank Bradley Armstrong, Frank Bradley Armstrong, and Thomas Peter Bennett. Bioquímica. Reverte, 1982.spa
dc.identifier.bibliographicCitationLaurence A Cole. Biology of Life: Biochemistry, Physiology and Philosophy. Academic Press, 2016.spa
dc.identifier.bibliographicCitationDominio pu´blico NEUROtiker. Estructura del trifosfato de adenosina (atp), protonado. [citado 15 julio 2020]. Disponible en: https://upload.wikimedia.org/wikipedia/commons/3/31/Adenosintriphosphat protoniert.svg, 2007.spa
dc.identifier.bibliographicCitationGreelane. El atp en el metabolismo. [citado 15 julio 2020]. Disponible en: https://www.greelane.com/es/ciencia-tecnolog%C3%ADamatem%C3%A1ticasciencia/phosphorylation-definition-4140732/, 2019.spa
dc.identifier.bibliographicCitationSimon Orozco Arias and Jeferson Arango L´opez. Aplicacio´n de la inteligencia artificial en la bioinform´atica, avances, definiciones y herramientas. UGCiencia, 22(1):159–171, 2016.spa
dc.identifier.bibliographicCitationDinler A Antunes, Didier Devaurs, and Lydia E Kavraki. Understanding the challenges of protein flexibility in drug design. Expert opinion on drug discovery, 10(12):1301–1313, 2015.spa
dc.identifier.bibliographicCitationJacob D Durrant and J Andrew McCammon. Molecular dynamics simulations and drug discovery. BMC biology, 9(1):71, 2011.spa
dc.identifier.bibliographicCitationMorris. Adt / autodocktools. [citado 05 de mayo 2020]. Disponible en: http://autodock.scripps.edu, 2007.spa
dc.identifier.bibliographicCitationRuth Huey, Garrett M Morris, and Stefano Forli. Using autodock 4 and autodock vina with autodocktools: A tutorial. The Scripps Research Institute Molecular Graphics Laboratory, 2012.spa
dc.identifier.bibliographicCitationAmbrish Roy, Alper Kucukural, and Yang Zhang. I-tasser: a unified platform for automated protein structure and function prediction. Nature protocols, 5(4):725, 2010.spa
dc.identifier.bibliographicCitationJohn Moult, Jan T Pedersen, Richard Judson, and Krzysztof Fidelis. A large-scale experiment to assess protein structure prediction methods. Proteins: Structure, Function, and Bioinformatics, 23(3):ii–iv, 1995.spa
dc.identifier.bibliographicCitationSitao Wu, Jeffrey Skolnick, and Yang Zhang. Ab initio modeling of small proteins by iterative tasser simulations. BMC biology, 5(1):17, 2007.spa
dc.identifier.bibliographicCitationNicolas Gue. Swiss-pdbviewer. [citado 16 de junio 2020]. Disponible en: https://spdbv.vital-it.ch/.spa
dc.identifier.bibliographicCitationVisualizaci´on e Inform´atica (RBVI) Recurso para Biocomputaci´on. Ucsf chimera. [citado 16 de junio 2020]. Disponible en: https://www.cgl.ucsf.edu/chimera/, 2019.spa
dc.identifier.bibliographicCitationVersion 1.XX. Software Libre. Avogadro: an open-source molecular builder and visualization tool. [citado 10 de junio 2020]. Disponible en: https://avogadro.cc/, 2006.spa
dc.identifier.bibliographicCitationCelia Torres Quezada, Patricia Varela Gangas, María Verónica Frías, and Patricio Flores-Morales. Implementación de avogadro como visualizador y constructor de moléculas para alumnos de primer año de odontología en la asignatura química general y orgánica. Educación química, 28(1):22–29, 2017.spa
dc.identifier.bibliographicCitationSebastian Raschka. Molecular docking, estimating free energies of binding, and autodock’s semi-empirical force field, 2014.spa
dc.identifier.bibliographicCitationInstituto Europeo de Bioinformática (EBI), Instituto Suizo de Bioinformática (SIB), and Protein Information Resource (PIR). The UniProt Knowledgebase (UniProtKB). [citado 17 marzo 2020]. Disponible en: https://www.uniprot.org/, 2002.spa
dc.identifier.bibliographicCitationKarin Walld´en and P¨ar Nordlund. Structural basis for the allosteric regulation and substrate recognition of human cytosolic 5-nucleotidase ii. Journal of molecular biology, 408(4):684–696, 2011.spa
dc.identifier.bibliographicCitationAS Bretonnet, LP Jordheim, C Dumontet, and JM Lancelin. Regulation and activity of cytosolic 5-nucleotidase ii: A bifunctional allosteric enzyme of the haloacid dehalogenase superfamily involved in cellular metabolism. FEBS letters, 579(16):3363–3368, 2005.spa
dc.identifier.bibliographicCitationMarco Kloos, Antje Bru¨ser, Ju¨rgen Kirchberger, Torsten Scho¨neberg, and Norbert Stra¨ter. Crystal structure of human platelet phosphofructokinase-1 locked in an activated conformation. Biochemical Journal, 469(3):421–432, 2015.spa
dc.identifier.bibliographicCitationWen Yi, Peter M Clark, Daniel E Mason, Marie C Keenan, Collin Hill, William A Goddard, Eric C Peters, Edward M Driggers, and Linda C Hsieh-Wilson. Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science, 337(6097):975–980, 2012.spa
dc.identifier.bibliographicCitationLukasz Wieteska, Saeid Shahidi, and Anastasia Zhuravleva. Allosteric fine-tuning of the conformational equilibrium poises the chaperone bip for post-translational regulation. Elife, 6:e29430, 2017.spa
dc.identifier.bibliographicCitationJiao Yang, Melesse Nune, Yinong Zong, Lei Zhou, and Qinglian Liu. Close and allosteric opening of the polypeptide-binding site in a human hsp70 chaperone bip. Structure, 23(12):2191–2203, 2015.spa
dc.identifier.bibliographicCitationEdgar Meyer and Walter Hamilton. PDB (Protein Data Bank). [citado 17 marzo 2020]. Disponible en: https://www.rcsb.org/, 1971.spa
dc.identifier.bibliographicCitationAkemi Irie, Akira Yamauchi, Keiichi Kontani, Minoru Kihara, Dage Liu, Yukako Shirato, Masako Seki, Nozomu Nishi, Takanori Nakamura, Hiroyasu Yokomise, et al. Galectin9 as a prognostic factor with antimetastatic potential in breast cancer. Clinical cancer research, 11(8):2962–2968, 2005.spa
dc.identifier.bibliographicCitationYumiko Kashio, Kazuhiro Nakamura, Mohammad J Abedin, Masako Seki, Nozomu Nishi, Naoko Yoshida, Takanori Nakamura, and Mitsuomi Hirashima. Galectin-9 induces apoptosis through the calcium-calpain-caspase-1 pathway. The Journal of Immunology, 170(7):3631–3636, 2003.spa
dc.identifier.bibliographicCitationYuka Tsuboi, Hiroko Abe, Ryusuke Nakagawa, Souichi Oomizu, Kota Watanabe, Nozomu Nishi, Takanori Nakamura, Akira Yamauchi, and Mitsuomi Hirashima. Galectin-9 protects mice from the shwartzman reaction by attracting prostaglandin e2-producing polymorphonuclear leukocytes. Clinical immunology, 124(2):221–233, 2007.spa
dc.identifier.bibliographicCitationAlexander H Stegh, Hyunggee Kim, Robert M Bachoo, Kristin L Forloney, Jean Zhang, Harald Schulze, Kevin Park, Gregory J Hannon, Junying Yuan, David N Louis, et al. Bcl2l12 inhibits post-mitochondrial apoptosis signaling in glioblastoma. Genes & development, 21(1):98–111, 2007.spa
dc.identifier.bibliographicCitationXiutian Guo, Mao-Gang Li, Shan-Shan Li, Feng-Hua Liu, Zhan-Ju Liu, and Ping-Chang Yang. Tumor necrosis factor suppresses interleukin 10 in peripheral b cells via upregulating bcl2-like protein 12 in patients with inflammatory bowel disease. Cell biochemistry and function, 35(2):77–82, 2017.spa
dc.identifier.bibliographicCitationZhi-Qiang Liu, Ying Feng, Li-Hua Mo, Xian-Hai Zeng, Jiang-Qi Liu, Rui-Di Xie, ZhiGang Liu, Ping-Chang Yang, Guang-Ji Zhang, and Shan-Dong Wu. Bcl2-like protein 12 plays a critical role in development of airway allergy through inducing aberrant th2 polarization. Journal of Allergy and Clinical Immunology, 143(1):427–430, 2019.spa
dc.identifier.bibliographicCitationHongyan Li, Dongbai Yang, and Zhifeng Tang. Bcl2 like protein-12 suppresses foxp3+ regulatory t cells in patients with rheumatoid arthritis. American Journal of Translational Research, 11(5):3048, 2019.spa
dc.identifier.bibliographicCitationEkaterina Dik, Adi Naamati, Hadar Asraf, Norbert Lehming, and Ophry Pines. Human fumarate hydratase is dual localized by an alternative transcription initiation mechanism. Traffic, 17(7):720–732, 2016.spa
dc.identifier.bibliographicCitationOhad Yogev, Adi Naamati, and Ophry Pines. Fumarase: a paradigm of dual targeting and dual localized functions. The FEBS journal, 278(22):4230–4242, 2011.spa
dc.identifier.bibliographicCitationJulie Adam, Ming Yang, Christina Bauerschmidt, Mitsuhiro Kitagawa, Linda O’Flaherty, Pratheesh Maheswaran, Gizem ¨Ozkan, Natasha Sahgal, Dilair Baban, Keiko Kato, et al. A role for cytosolic fumarate hydratase in urea cycle metabolism and renal neoplasia. Cell reports, 3(5):1440–1448, 2013.spa
dc.identifier.bibliographicCitationIP Tomlinson, NA Alam, AJ Rowan, E Barclay, EE Jaeger, D Kelsell, I Leigh, P Gorman, H Lamlum, S Rahman, et al. Multiple leiomyoma consortium: Germline mutations in fh predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet, 30(4):406–410, 2002.spa
dc.identifier.bibliographicCitationMariana A Ajalla Aleixo, Victor L Rangel, Joane K Rustiguel, Ricardo AP de Pa´dua, and Maria Cristina Nonato. Structural, biochemical and biophysical characterization of recombinant human fumarate hydratase. The FEBS journal, 286(10):1925–1940, 2019.spa
dc.identifier.bibliographicCitationMargarita Velásquez, Juan Drosos, Carlos Gueto, Johana Márquez, and Ricardo VivasReyes. Método acoplado autodock-pm6 para seleccionar la mejor pose en estudios de acoplamiento molecular. Revista Colombiana de Química, 42(1), 2013.spa
dc.identifier.instnameinstname:Universidad Antonio Nariñospa
dc.identifier.reponamereponame:Repositorio Institucional UANspa
dc.identifier.repourlrepourl:https://repositorio.uan.edu.co/spa
dc.identifier.urihttp://repositorio.uan.edu.co/handle/123456789/2216
dc.language.isospaspa
dc.publisherUniversidad Antonio Nariñospa
dc.publisher.campusBogotá - Surspa
dc.publisher.facultyFacultad de Ingeniería Mecánica, Electrónica y Biomédicaspa
dc.publisher.programIngeniería Biomédicaspa
dc.rightsAcceso abierto
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa
dc.rights.licenseAttribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subjectProteínases_ES
dc.subjectSitio alostéricoes_ES
dc.subjectATPes_ES
dc.subjectBioinformáticaes_ES
dc.subjectDASP3es_ES
dc.subjectDockinges_ES
dc.subject.keywordProteinses_ES
dc.subject.keywordAllosteric Sitees_ES
dc.subject.keywordATPes_ES
dc.subject.keywordBioinformaticses_ES
dc.subject.keywordDASP3es_ES
dc.subject.keywordDockinges_ES
dc.titleIdentificación de sitios alostéricos en proteínas de Homo sapiens que interactúan con la molécula de ATP mediante la herramienta Deacon Active Site Profiler (DASP3)es_ES
dc.typeTrabajo de grado (Pregrado y/o Especialización)spa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
Files
Original bundle
Now showing 1 - 2 of 2
thumbnail.default.alt
Name:
2020AutorizacióndeAutores.pdf
Size:
649.93 KB
Format:
Adobe Portable Document Format
Description:
Autorización de autores
thumbnail.default.alt
Name:
2020AdrianaCamilaGonzalezRosas.pdf
Size:
3.9 MB
Format:
Adobe Portable Document Format
Description:
Trabajo integral de grado
License bundle
Now showing 1 - 1 of 1
thumbnail.default.alt
Name:
license.txt
Size:
2.65 KB
Format:
Item-specific license agreed upon to submission
Description: