Desarrollo de un bioinstrumento para estimar la impedancia acústica de la córnea utilizando método de inmersión biométrica a-scan
Files
Share
Date
2021-06-04
Director(s)
Publisher
Universidad Antonio Nariño
Campus
Program
Degree obtained
Document type
COAR type
http://purl.org/coar/resource_type/c_7a1f
Citation
Bibliographic Managers
item.page.resume
Abstract
The present academic proposal presents the development of an ultrasonic bioinstrument,
which makes it possible to measure acoustic impedance in order to be able to correlate it
with that with reference acoustic impedance, integrated in a biomedical instrument., not
invasive - non-harmful, which incorporates ophthalmological advantages in clinical
diagnosis, such as: the minimization of instruments in direct contact with structures of the
patient's eye to reduce the risk of trauma, injury and infection and consequently avoid the
use of anesthetic agents. The system to be implemented includes the design, integration,
development and interrelationship of hardware: a) high frequency ultrasonic transducers;
b) an integrated system of electric pulse generator and digital signal acquisition; c) a
microcontroller for the activation of A-scan inspection and, d) the manufacture of
mechanical devices ("Modification of a praguer cup") as an acoustic coupling system and
integration of the electronic instrumentation for the acquisition of signals to be transmitted
to the computer.
And software that includes the development of computational characterization algorithms
quantitative ultrasonics that will be developed in Matlab. Ultrasonic insonification, initially
is validated on the manufacture of ocular acoustic Phantoms and later on bio-models.
The validation of the bioinstrument should include an experimental test in patients with
respective informed consent and comparing the results with values from the literature.
The expected results were obtained from the bioinstrument, since the acoustic
impedance values presented are very close to the literature with an average error
percentage of 6.10% for patients with open eyes and 17.81% with closed eyes. Thus
concluding that the bioinstrument contributes to the measurement of acoustic parameters
in the human eye.