Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.uan.edu.co/handle/123456789/3913

Logo





Título : A machine vision system using circular autoregressive models for rapid recognition of salmonella typhimurium
A machine vision system using circular autoregressive models for rapid recognition of salmonella typhimurium
metadata.dc.creator: Trujillo, O.
Griffis, C. L.
Li, Y.
Slavik, M. F.
Palabras clave : Bacteria detection;fluorescence microscopy;machine vision;image analysis;pattern recognition
Descripción : The objective of this research was to develop a machine vision system using image processing and statistical modeling techniques to identify and enumerate bacteria on slides containing Salmonella typhimurium. Pictures of bacterial cells were acquired with a CCD camera attached to a motorized fluorescence microscope. A shape boundary modeling technique, based on the use of circular autoregressive model parameters, was used. A feature weighting classifier was trained with ten images belonging to each shape class (rod shape and circle shape). In order to enhance the discrimination of circular shapes, a size range was added to the recognition algorithm. Experimental results showed that the model parameters could be used as descriptors of shape boundaries detected in digitized binary images of bacterial cells. The introduction of the rotated coordinate method and the circular size restriction, reduced the differences between automated and manual recognition/enumeration from 7% to less than 1%. The computer analyzed each image in approximately 5 s (a total of 2 h including sample preparation), while the bacteriologist spent an average of 1 min for each image.
The objective of this research was to develop a machine vision system using image processing and statistical modeling techniques to identify and enumerate bacteria on slides containing Salmonella typhimurium. Pictures of bacterial cells were acquired with a CCD camera attached to a motorized fluorescence microscope. A shape boundary modeling technique, based on the use of circular autoregressive model parameters, was used. A feature weighting classifier was trained with ten images belonging to each shape class (rod shape and circle shape). In order to enhance the discrimination of circular shapes, a size range was added to the recognition algorithm. Experimental results showed that the model parameters could be used as descriptors of shape boundaries detected in digitized binary images of bacterial cells. The introduction of the rotated coordinate method and the circular size restriction, reduced the differences between automated and manual recognition/enumeration from 7% to less than 1%. The computer analyzed each image in approximately 5 s (a total of 2 h including sample preparation), while the bacteriologist spent an average of 1 min for each image.
URI : http://repositorio.uan.edu.co/handle/123456789/3913
Otros identificadores : http://revistas.uan.edu.co/index.php/ingeuan/article/view/333
Editorial : UNIVERSIDAD ANTONIO NARIÑO
Aparece en las colecciones: INGE@UAN

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.