Recomendaciones para la evaluación de las propiedades biomecánicas de hidrogeles de fibrina agarosa nanoestructurado por medio de microscopia de fuerza atómica

Loading...
Thumbnail Image
Share
Date
2020-11-19
Publisher
Universidad Antonio Nariño
Document type
Otros
COAR type
http://purl.org/coar/resource_type/c_7a1f
Citation
Bibliographic Managers
Document Viewer
Select a file to preview:
item.page.resume
Propia
Abstract
Introduction: The nanostructured agarose-fibrin is a material recently used in bioengineering applications, but the physical, mechanical and surface topographic characteristics at the nanoscale are still unknown. Objective. Is to review the theory and contrast with some previous laboratory results in relation to tests on hydrogel fibrin agarose scaffolds for the values of perforation force, adhesion force, as physical properties and apparent modulus of elasticity as mechanical property by evaluation with microscopy of atomic force. Methods: Samples of agarose-fibrin hydrogels were obtained, and a preliminary analysis was carried out in atomic force microscopy (AFM). Articles from the Pubmeds, google scholar, and sciencedirect databases were reviewed with search algorithms to extract information about the analysis parameters in AFM in a fibrin-agarose hydrogel sample. Results. Preliminary tests showed that the uncoated pyramid tip showed better penetration into the material surface without creating tears or adhesion to the material and an adhesive was not required to fix the samples due to the characteristic of the material. The theoretical review showed that for hydrogel samples, the ideal is to do AFM analysis in liquid medium with a buffer, which can also be used as a means of transport. In the same way, it is recommended to use low loads and a constant between k = 0.01-0.9 N / m. The ideal contact time is 100ms and a maximum force of 100pN for each indentation. Conclusions: Atomic f microscopy can be used for the analysis on a nanometric scale of fibrin agarose gels, but it requires establishing standardized parameters to avoid inconveniences with the samples.
item.page.coverage.spatial
item.page.coverage.temporal