Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.uan.edu.co/handle/123456789/1971
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.advisor | Moreno López, Deywis | - |
dc.contributor.advisor | Rodriguez Suarez, Cesar Augusto | - |
dc.contributor.advisor | Hernández, Andrés Ignacio | - |
dc.creator | Delgado Gonzalez, Maritza Juliette | - |
dc.date.accessioned | 2021-02-26T14:01:41Z | - |
dc.date.available | 2021-02-26T14:01:41Z | - |
dc.date.created | 2020-11-24 | - |
dc.identifier.uri | http://repositorio.uan.edu.co/handle/123456789/1971 | - |
dc.description | Externa | es_ES |
dc.description.abstract | At the moment, there is no dosimeter that provides a real-time measurement of ultraviolet radiation dose at cryogenic temperatures during the sterilization of liquid nitrogen, because the technical parameters are defined at room temperature, and many of these change dramatically at temperature of -195 °C. In this work, a prototype of a cryogenic dosimeter based on Silicon photomultipliers (SiPM) is designed, useful for characterizing the dose of ultraviolet radiation measured in real time for quality control of cryogenic applications in medicine, biology, biotechnology and industry. In this study, a simulation with optical photons (253 nm) was performed in liquid and gaseous nitrogen, using Geant4 simulation toolkit. The results present a zone of minimal UV radiation inside a container of liquid nitrogen, and a method for estimating the radiation dose with one or more cryogenic SiPMs, located inside the container, especially in the minimum radiation zone in order to certify the absence of microorganisms in the liquid nitrogen. | es_ES |
dc.description.sponsorship | Otro | es_ES |
dc.description.tableofcontents | En la actualidad, no es posible encontrar un dosímetro que proporcione una medida de la dosis de radiación ultravioleta en tiempo real a temperatura criogénica durante la esterilización del nitrógeno líquido, ya que sus parámetros técnicos se definen a temperatura ambiente, y muchos de estos cambian drásticamente a una temperatura de -195°C. En este trabajo se diseña un prototipo de un dosímetro criogénico basado en fotomultiplicadores de Silicio (SiPM), útil para la caracterización de la dosis de radiación ultravioleta medida en tiempo real para controles de calidad en aplicaciones criogénicas en medicina, biología, biotecnología e industria. En este estudio se realizó una simulación con fotones ópticos (253 nm) en nitrógeno líquido y gaseoso, utilizando el kit de herramientas de simulación Geant4. Los resultados presentan una zona de mínima radiación UV dentro de un contenedor de nitrógeno líquido y un método para la estimación de la dosis de radiación con uno o más SiPM´s criogénicos ubicados dentro del contenedor, especialmente, en la zona mínima de radiación con el fin de certificar la ausencia de microorganismos dentro del nitrógeno líquido. | es_ES |
dc.language.iso | spa | es_ES |
dc.publisher | Universidad Antonio Nariño | es_ES |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | instname:Universidad Antonio Nariño | es_ES |
dc.source | reponame:Repositorio Institucional UAN | es_ES |
dc.source | instname:Universidad Antonio Nariño | es_ES |
dc.source | reponame:Repositorio Institucional UAN | es_ES |
dc.subject | Radiación Ultravioleta, Nitrogeno Líquido, Esterilización, Silicon Photomultiplier, Geant4 | es_ES |
dc.title | Sistema y método para estimar la dosis de radiación ultravioleta durante la esterilización del nitrógeno líquido | es_ES |
dc.publisher.program | Doctorado en Ciencia Aplicada | es_ES |
dc.rights.accesRights | restrictedAccess | es_ES |
dc.subject.keyword | Ultraviolet Radiation, Liquid Nitrogen, Sterilization, Silicon Photomultiplier, Geant4 | es_ES |
dc.type.spa | Tesis y disertaciones (Maestría y/o Doctorado) | es_ES |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | es_ES |
dc.source.bibliographicCitation | Abi, B. e. (2020). Introduction to DUNE. Journal of Instrumentation, Volume 15. | es_ES |
dc.source.bibliographicCitation | Abi, B. e. (2020). The DUNE far detector single phase technology. Journal of Instrumentation, Volume 15. | es_ES |
dc.source.bibliographicCitation | Acciari, R. e. (2011). Test and Comparison of Photomultiplier Tubes at Liquid Argon Temperature. Technology and Instrumentation for Particle Physics., 1087-1094. | es_ES |
dc.source.bibliographicCitation | Acciari, R. e. (2017). Design and Construction of the MicroBooNE Detector. Journal of instrumentation. | es_ES |
dc.source.bibliographicCitation | Acerbia, F., & Gundackerbc, S. (2019). Understanding and simulating SiPMs. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 16-35. | es_ES |
dc.source.bibliographicCitation | Agostinelliae, S., & Allisonas, J. (2003). Geant4 a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 250-303. | es_ES |
dc.source.bibliographicCitation | Álvarez, V. e. (2012). NEXT-100 Technical Design Report (TDR). Executive summary. Journal of instrumentation, Vol 7. | es_ES |
dc.source.bibliographicCitation | Bakkali, J., Doudouh, A., & Mansouri, H. (2018). Assessment of Monte Carlo Geant4 capabilities in prediction of photon beam dose distribution in a heterogeneous medium. Physics in medicine, 1-5. | es_ES |
dc.source.bibliographicCitation | Berra, A. e. (2015). A SiPM based real time dosimeter for radiotherapic beams. Nuclear Instruments and Methods in Physics Research A, 72-80. | es_ES |
dc.source.bibliographicCitation | Bielanski, A. e. (2003). Microbial contamination of embryos and semen during long term banking in liquid nitrogen. Cryobiology, 146-152. | es_ES |
dc.source.bibliographicCitation | Birmpa, A., Sfika, V., & Vantarakis, A. (2013). Ultraviolet light and Ultrasound as non-thermal treatments for the inactivation of microorganisms in fresh ready-to-eat foods. International Journal of Food Microbiology, 96-102. | es_ES |
dc.source.bibliographicCitation | Boullard, A., & Giacomoni, P. U. (1988). Effect of UV irradiation at defined wavelengths on the tertiary structure of double-stranded covalently closed circular DNA. Journal of Photochemistry and Photobiology B: Biology, 491-501. | es_ES |
dc.source.bibliographicCitation | Cervi, T. e. (2017). Study oSiPM custom arrays for scintillation light detection in a Liquid Argon Time Projection Chamber. Journal of Instrumentation, Volume 12. | es_ES |
dc.source.bibliographicCitation | Chang, J. C., & et al. (1985). UV Inactivation of Pathogenic and Indicator Microorganisms. Applied and environmental microbiology, 1361-1365. | es_ES |
dc.source.bibliographicCitation | Elder, K., Bergh, M. V., & Woodward, B. (2015). Troubleshooting and problem-Solving in the IVF Laboratory. United Kingdom: Cambridge University Press. | es_ES |
dc.source.bibliographicCitation | EPA, A. U. (2003). Ultra Violet Disinfection Special Manual. U.S.Environmental Protection Agency. Washington: EPA 815-D-03-007. | es_ES |
dc.source.bibliographicCitation | Falcone, A. e. (2020). Cryogenic SiPM arrays for the DUNE photon detection system. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1646-1648. | es_ES |
dc.source.bibliographicCitation | Gerba, C. P., Gramos, D. M., & Nwachuku, N. (2002). Comparative Inactivation of Enteroviruses and Adenovirus 2 by UV Light. Applied and Environmental Microbiology, 5167-5169. | es_ES |
dc.source.bibliographicCitation | Grace, E., & et al. (2017). Index of refraction, Rayleigh scattering length, and Sellmeier coefficients in solid and liquid argon and xenon. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 204-208. | es_ES |
dc.source.bibliographicCitation | Griesmann, U., & Burnett, J. (1999). Refractivity of nitrogen gas in the vacuum ultraviolet. Optics Letters, 1699-1701. | es_ES |
dc.source.bibliographicCitation | Gutiérrez, A., López, M. A., Palou, E., & Ramirez, C. N. (2015). Métodos para la determinación de la dosis de radiación ultravioleta de onda corta (UVC) en alimentos. Temas selectos de Ingeniería de alimentos, 34-40. | es_ES |
dc.source.bibliographicCitation | Hurst, C. J. (2017). Modeling the Transmission and Prevention of infectious Desease. USA: Springer. | es_ES |
dc.source.bibliographicCitation | INVIMA. (2009). Manual de buenas practicas de Manufactura de los Gases Medicinales. Bogotá: Ministerio de Salud y Protección Social de Colombia. | es_ES |
dc.source.bibliographicCitation | Isachenko, V. e. (2010). Human ovarian tissue cryopreservation: quality of follicles as a criterion of effectiveness. Reproductive BioMedicine, 441-442. | es_ES |
dc.source.bibliographicCitation | ISO14161. (2000). esterilización de productos sanitarios : indicadores biológicos : orientación para la selección, la utilización y la interpretación de los resultados. AENOR. | es_ES |
dc.source.bibliographicCitation | Joaquim, D. C., Borges, E. D., Viana, L. G., Navarro, P. A., & Vireque, A. A. (2017). Risk of Contamination of Gametes and Embryos during Cryopreservation and Measures to Prevent Cross-Contamination. BioMed Research International, 11. | es_ES |
dc.source.bibliographicCitation | Kryczynski, P. e. (2016). Scintillation light detection system in LArIAT. Journal of Instrumentation, Volume 11. | es_ES |
dc.source.bibliographicCitation | Leo, W. R. (1987). Techniques for Nuclear and Particle Experiments. Berlín: Springer. | es_ES |
dc.source.bibliographicCitation | Machado, A., & Segreto, E. (2016). ARAPUCA a new device for liquid argon scintillation light detection. Journal of Instrumentation,, Volume 11. | es_ES |
dc.source.bibliographicCitation | Morris, G. (2005). The origin, ultrastructure, and microbiology of the sediment accumulating in liquid nitrogen storage vessels. Cryobiology, 231-238. | es_ES |
dc.source.bibliographicCitation | Parmegiani Lodovico, C. G. (2009). Ultra-violet sterilization of liquid nitrogen prior to vitrification. Human Reproduction, 2969. | es_ES |
dc.source.bibliographicCitation | Parmegiani, L., & et al. (2009). Sterilization of liquid nitrogen with ultraviolet irradiation for safe vitrification of human oocytes or embryos. Techniques and instrumentation, 1525-1528. | es_ES |
dc.source.bibliographicCitation | Parmegiani, L., Cognigni, G. E., & Filicori, M. (2011). Efficacy of ultraviolet sterilization of liquid nitrogen. Reproductive Medicine, 22. | es_ES |
dc.source.bibliographicCitation | Pessoa, G., Batistella, M., Mondino, C., & Costa da Rosa, D. (2014). Decontamination of naturally contaminated liquid nitrogen storage tanks. Revista Brasileira de Zootecnia., 5. | es_ES |
dc.source.bibliographicCitation | Rivero, G. J. (2012). CAPÍTULO I. GENERALIDADES DE LA CRIOPRESERVACIÓN. En G. J. Rivero, Modelado matemático e implementación práctica de sistema de vitrificación ultra-rápida mediante radiación láser (págs. 8-23). Sevilla: Universidad de Sevilla. | es_ES |
dc.source.bibliographicCitation | Schalk, S., Adam, V., Arnold, E., & Brieden, K. (2005). UV-Lamps for Disinfection and Advanced Oxidation - Lamp Types,Technologies and Applications. IUVA News, 32-37. | es_ES |
dc.source.bibliographicCitation | Scotto, M. (2003). Molecular Motion and Raman Band Shapes in Liquid Nitrogen and Oxygen. The Journal of Chemical Physics, 5362. | es_ES |
dc.source.bibliographicCitation | Whittington, D. (2015). Photon Detection System Designs for the Deep Underground Neutrino Experiment. arXiv. | es_ES |
dc.source.bibliographicCitation | Wischnewski , B. (Junio de 2007). peacesoftware. Berlín, Wagner-Str. 49, Alemania. | es_ES |
dc.source.bibliographicCitation | Yonezawa, F., & Ninomiya, T. (1982). Topological Disorder in Condensed Matter. Shimoda: Springer. | es_ES |
dc.description.degreename | Doctor(a) en Ciencia Aplicada | es_ES |
dc.description.degreelevel | Doctorado | es_ES |
dc.publisher.faculty | Facultad de Ciencias | es_ES |
dc.description.funder | Convocatoria Doctorados Nacionales, 757, 2016 | es_ES |
dc.description.notes | Presencial | es_ES |
dc.creator.orcid | https://orcid.org/0000-0002-2646-620X | es_ES |
dc.creator.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001343755 | es_ES |
dc.creator.cedula | 53068081 | es_ES |
dc.creator.cedula | 79728622 | es_ES |
dc.creator.cedula | 10025092 | es_ES |
dc.creator.cedula | 80417160 | es_ES |
dc.publisher.campus | Bogotá - Circunvalar | - |
Aparece en las colecciones: | Doctorado en Ciencia aplicada |
Ficheros en este ítem:
Fichero | Tamaño | |
---|---|---|
2020MaritzaDelgadoGonzalez.pdf.pdf | 7.12 MB | Visualizar/Abrir |
2020Autorizacióndeautores.pdf Restricted Access | 818.82 kB | Visualizar/Abrir Request a copy |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons