Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.uan.edu.co/handle/123456789/1605
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorLópez Pazos, Silvio Alejandro-
dc.contributor.advisorRojas Arias, Adriana Carolina-
dc.creatorLandinez Velandia, Sandra Milena-
dc.date.accessioned2021-02-22T15:28:23Z-
dc.date.available2021-02-22T15:28:23Z-
dc.date.created2020-05-29-
dc.identifier.urihttp://repositorio.uan.edu.co/handle/123456789/1605-
dc.description.abstractBacteriocins comprise a large number of peptides synthesized ribosomically by countless numbers of bacteria. Biosynthesis is carried out by structural genes that encode these peptides. The increasing bacterial resistance threatens human and animal health. Bacillus subtilis has been shown to produce a wide range of bacteriocins. The genus Pseudomonas sp. synthesizes different antimicrobial peptides to dominate over other competing organisms. P. extremeustralis species is a non-pathogenic Gram-negative bacterium, isolated from a pond in the Antarctic Peninsula. Twenty-one bacteriocin sequences were identified in silico in the genome of B. Subtilis ATCC 6633 and two associated sequences in the genome of P. extremeustralis CMPUJ U515. The physicochemical properties allowed establishing the molecular weight, the isoelectric point, the positively and negatively charged residues, the extinction coefficient, the stability index, the aliphatic index and the overall average of hydropaticity (GRAVY). The products obtained from PCR, resulted in three products that correspond to the bacteriocins Subtilin, Sublancin 168 and Subtilocin A. Finally, it was desired to establish the possible growth inhibitory effect of the protein extracts of B. subtilis ATCC 6633 and P. extremaustralis CMPUJ U515, for which a qualitative sensidisk test was performed on the strains of Escherichia coli ATCC 25922 and Staphylococcus aureus CMPUJ 080. Unfortunately no activity was found. In this investigation we concluded that Bacillus subtilis ATCC 6633 has biocontrol potential due to its bacteriocins which can be cloned by homologous recombination into yeast, to analyze its biological functionality.es_ES
dc.description.tableofcontentsLas bacteriocinas abarcan un gran número de péptidos sintetizados ribosómicamente por innumerable cantidad de bacterias. La biosíntesis es llevada a cabo por genes estructurales que codifican estos péptidos. La creciente resistencia bacteriana amenaza la salud humana y animal. Se ha demostrado que Bacillus subtilis produce amplia gama de bacteriocinas. El género Pseudomonas sp. sintetiza diferentes péptidos antimicrobianas para dominar sobre los otros organismos en competencia. La especie P. extremaustralis es una bacteria Gram negativa no patógena, aislada de un estanque de la Península Antártica. Se identificaron in silico 21 secuencias de bacteriocinas en el genoma de B. Subtilis ATCC 6633 y dos secuencias asociadas en el genoma de P. extremaustralis CMPUJ U515. Las propiedades fisicoquímicas permitieron establecer el peso molecular, el punto isoeléctrico, los residuos cargados positiva y negativamente, el coeficiente de extinción, el índice de estabilidad, el índice alifático y el promedio general de hidropaticidad (GRAVY). Los productos obtenidos de PCR, dio como resultado tres productos que corresponden a las bacteriocinas Subtilina, Sublancina 168 y Subtilocina A. Finalmente se deseaba establecer el posible efecto inhibidor de crecimiento de los extractos proteicos de B. subtilis ATCC 6633 y P. extremaustralis CMPUJ U515, para lo cual se realizó una prueba cualitativa con sensidiscos sobre las cepas de Escherichia coli ATCC 25922 y Staphylococcus aureus CMPUJ 080. Desafortunadamente no se encontró actividad. En esta investigación concluimos que Bacillus subtilis ATCC 6633 tiene potencial biocontrolador debido a sus bacteriocinas las cuales pueden clonarse mediante recombinación homologa en levadura, para analizar su funcionalidad biológica.es_ES
dc.language.isospaes_ES
dc.publisherUniversidad Antonio Nariñoes_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectpéptidos codificados ribosomalmente, lantibióticos, Bacillus subtilis, Pseudomonas extremaustralis, Escherichia coli, Staphylococcus aureus.es_ES
dc.titleCaracterización de bacteriocinas de Bacillus subtilis ATCC 6633 y Pseudomonas extremaustralis CMPUJ U515 en la perspectiva de control hacía patógenos humanoses_ES
dc.publisher.programMaestría en Bioquímicaes_ES
dc.rights.accesRightsopenAccesses_ES
dc.subject.keywordribosomally coded peptides, lantibiotics, Bacillus subtilis, Pseudomonas extremaustralis, Escherichia coli, Staphylococcus aureuses_ES
dc.type.spaTesis y disertaciones (Maestría y/o Doctorado)es_ES
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones_ES
dc.source.bibliographicCitationAbriouel, H. F. (2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiology Reviews, 35(1), 201–232. doi:https://doi.org/10.1111/j.1574-6976.2010.00244.xes_ES
dc.source.bibliographicCitationAgudelo Londoño, N.-T. M.-L. (2015). Bacteriocinas Producidas Por Bacterias Ácido Lácticas y Su Aplicación En La Industria De Alimentos. Alimentos Hoy, 23(36), 186-205. Obtenido de http://www.alimentoshoy.acta.org.co/index.php/hoy/article/view/356es_ES
dc.source.bibliographicCitationAhmad, V. K. (2017). Antimicrobial potential of bacteriocins: in therapy, agriculture and food preservation. International Journal of Antimicrobial Agents, 49(1), 1-11. doi:https://doi.org/10.1016/j.ijantimicag.2016.08.016es_ES
dc.source.bibliographicCitationArumugam, T. D. (2019). Inhibition of Methicillin Resistant Staphylococcus aureus by Bacteriocin Producing Pseudomonas aeruginosa. International Journal of Peptide Research and Therapeutics, 25(1), 339-348. doi:https://doi.org/10.1007/s10989-018-9676-yes_ES
dc.source.bibliographicCitationAylon, Y. y. (2004). New insights into the mechanism of homologous recombination in yeast. Elsevier, 566(3), 231-248. doi:https://doi.org/10.1016/j.mrrev.2003.10.001es_ES
dc.source.bibliographicCitationBédard, F. y. (2018). Recent progress in the chemical synthesis of class II and S-glycosylated bacteriocins. Frontiers in Microbiology, 9, 1-14. doi: https://doi.org/10.3389/fmicb.2018.01048es_ES
dc.source.bibliographicCitationBen Lagha, A. H. (2017). Antimicrobial potential of bacteriocins in poultry and swine production. Veterinary Research, 48(1), 1-12. doi:https://doi.org/10.1186/s13567-017-0425-6es_ES
dc.source.bibliographicCitationBenforte, F. C. (2018). Novel essential role of ethanol oxidation genes at low temperature revealed by transcriptome analysis in the antarctic bacterium pseudomonas extremaustralis. PLoS ONE, 13(2), 1-18. doi:https://doi.org/10.1371/journal.pone.0192559es_ES
dc.source.bibliographicCitationBenforte, F. C. (2018). Novel role of the LPS core glycosyltransferase WapH for cold adaptation in the Antarctic bacterium Pseudomonas extremaustralis. PLoS ONE, 13(2), 1–18. doi:https://doi.org/10.1371/journal.pone.0192559es_ES
dc.source.bibliographicCitationBengtsson-Palme, J. K. (2018). Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiology Reviews, 42(1), 68–80. doi:https://doi.org/10.1093/femsre/fux053es_ES
dc.source.bibliographicCitationCaulier, S. N. (2019). Overview of the Antimicrobial Compounds Produced by Members of the Bacillus subtilis Group. Frontiers in Microbiology, 10, 1–19. doi: https://doi.org/10.3389/fmicb.2019.00302es_ES
dc.source.bibliographicCitationChikindas, M. L. (2018). Functions and emerging applications of bacteriocins. Current Opinion in Biotechnology, 49, 23-28. doi:https://doi.org/10.1016/j.copbio.2017.07.011es_ES
dc.source.bibliographicCitationCooper y Hausman, .. (2011). La CÉLULA. Marban.es_ES
dc.source.bibliographicCitationDaza Pérez, R. M. (1998). Resistencia bacteriana a antimicrobianos: su importancia en la toma de decisiones en la práctica diaria. InformaciónTerapeutica Del Sistema Nacional de Salud, 22(3), 57-67. Obtenido de http://www.msc.es/fr/biblioPublic/publicaciones/docs/bacterias.pdfes_ES
dc.source.bibliographicCitationDobson, A. C. (2012). Bacteriocin production: A probiotic trait? Applied and Environmental Microbiology, 78(1), 1–6. doi:https://doi.org/10.1128/AEM.05576-11es_ES
dc.source.bibliographicCitationDorosky, R. J. (2017). Pseudomonas chlororaphis Produces Two Distinct R-Tailocins That Contribute to Bacterial Competition in Biofilms and on Roots. Applied and Environmental Microbiology, 83(15), 1–16. doi:https://doi.org/10.1128/aem.00706-17es_ES
dc.source.bibliographicCitationDubois, J. Y. (2009). Immunity to the bacteriocin sublancin 168 is determined by the SunI (YolF) protein of Bacillus subtilis. Antimicrobial Agents and Chemotherapy, 53(2), 651-661. doi: https://doi.org/10.1128/AAC.01189-08es_ES
dc.source.bibliographicCitationEgan, K. F. (2016). Bacteriocins: Novel solutions to age old spore-related problems? Frontiers in Microbiology, 7, 1-21. doi:https://doi.org/10.3389/fmicb.2016.00461es_ES
dc.source.bibliographicCitationEnnahar, S. S. (2000). Class IIa bacteriocins: Biosynthesis, structure and activity. FEMS Microbiology Reviews, 24(1), 85-106. doi:https://doi.org/10.1016/S0168-6445(99)00031-5es_ES
dc.source.bibliographicCitationFelix, P. (2018). Homologous Recombination : To Fork and Beyond. Genes, 9, 603. doi:https://doi.org/10.3390/genes9120603es_ES
dc.source.bibliographicCitationGabrielsen, C. B. (2014). Circular bacteriocins: Biosynthesis and mode of action. Applied and Environmental Microbiology, 80(22), 6854-6862. doi:https://doi.org/10.1128/AEM.02284-14es_ES
dc.source.bibliographicCitationGasteiger, E. H. (2005). Protein Identification and Analysis Tools on the ExPASy Server. The Proteomics Protocols Handbook, 571-608. doi:https://doi.org/10.1385/1592598900es_ES
dc.source.bibliographicCitationGhequire, M. G. (2014). Ribosomally encoded antibacterial proteins and peptides from Pseudomonas. FEMS Microbiology Reviews, 38(4), 523–568. doi:https://doi.org/10.1111/1574-6976.12079es_ES
dc.source.bibliographicCitationGhequire, M. G. (2017). Novel immunity proteins associated with colicin M-like bacteriocins exhibit promiscuous protection in pseudomonas. Frontiers in Microbiology, 8, 1–9. doi:https://doi.org/10.3389/fmicb.2017.00093es_ES
dc.source.bibliographicCitationHeng, N. T. (2006). What's in a name? Class distinction for bacteriocins. Nat Rev Microbiol, 4, 160. doi:https://doi.org/10.1038/nrmicro1273-c1es_ES
dc.source.bibliographicCitationIbarra, J. G. (2014). Genome sequence analysis of Pseudomonas extremaustralis provides new insights into environmental adaptability and extreme conditions resistance. Springer, 19(1), 2017-220. doi:https://doi.org/10.1007/s00792-014-0700-7es_ES
dc.source.bibliographicCitationINS. (2017). Resultados del Programa de Informe de Resultados de la Vigilancia por Laboratorio de Resistencia antimicrobiana en Infecciones Asociadas a la Atención en Salud (IAAS) 2017. Bogotá: Instituto Nacional de Salud.es_ES
dc.source.bibliographicCitationINS. (2018). Resistencia Bacteriana A Los Antimicrobianos En El Ámbito Hospitalario. Bogotá: Instituto Nacional de Salud.es_ES
dc.source.bibliographicCitationINS. (2019). Informe De Resultados De La Vigilancia Por Laboratorio De Resistencia Antimicrobiana En Infecciones Asociadas A La Atención En Salud (Iaas) 2018. Bogotá: Instituto Nacional de Salud.es_ES
dc.source.bibliographicCitationKaškonienė, V. S.-S. (2017). Current state of purification, isolation and analysis of bacteriocins produced by lactic acid bacteria. Springer, 101(4), 1323-1335. doi: https://doi.org/10.1007/s00253-017-8088-9es_ES
dc.source.bibliographicCitationKrogh, B. O. (2004). Recombination Proteins in Yeast. Annual Review of Genetics, 38(1), 233-271. doi:https://doi.org/10.1146/annurev.genet.38.072902.091500es_ES
dc.source.bibliographicCitationKumariya, R. G. (2019). Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microbial Pathogenesis, 128, 171-177. doi:https://doi.org/10.1016/j.micpath.2019.01.002es_ES
dc.source.bibliographicCitationKunst, F. O. (1997). The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature, 390, 249-256. doi:https://doi.org/10.1038/36786es_ES
dc.source.bibliographicCitationKyte, J. y. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157(1), 105-132. doi:https://doi.org/10.1016/0022-2836(82)90515-0es_ES
dc.source.bibliographicCitationLu, Z. G. (2018). Isolation, identification and characterization of novel Bacillus subtilis. Journal of Veterinary Medical Science, 80(3), 427-433. doi: doi:10.1292/jvms.16-0572es_ES
dc.source.bibliographicCitationMatsui, H. S. (1993). Regulation of pyocin genes in Pseudomonas aeruginosa by positive (prtN) and negative (prtR) regulatory genes. Journal of Bacteriology, 175(5), 1257-1263. doi:https://doi.org/10.1128/jb.175.5.1257-1263.1993es_ES
dc.source.bibliographicCitationMcCaughey, L. C. (2016). Discovery, characterization and in vivo activity of pyocin SD2, a protein antibiotic from Pseudomonas aeruginosa. Biochemical Journal, 473(15), 2345–2358. doi:doi:10.1042/bcj20160470es_ES
dc.source.bibliographicCitationMichel-Briand, Y. y. (2002). The pyocins of Pseudomonas aeruginosa. Biochimie, 84, 499–510. doi:https://doi.org/10.1016/S0300-9084(02)01422-0es_ES
dc.source.bibliographicCitationMinsalud, M. d. (2018). Plan Nacional de Respuesta a la Resistencia a los Antimicrobianos - plan estratégico. Bogotá: Ministerio de Salud y Protección Social.es_ES
dc.source.bibliographicCitationMontiel, D. K.-P. (2015). Yeast homologous recombination-based promoter engineering for the activation of silent natural product biosynthetic gene clusters. Proceedings of the National Academy of Sciences of the United States of America, 112(29), 8953-8958. doi:https://doi.org/10.1073/pnas.1507606112es_ES
dc.source.bibliographicCitationNonejuie, P. T. (2016). Application of bacterial cytological profiling to crude natural product extracts reveals the antibacterial arsenal of Bacillus subtilis. The Journal of antibiotics, 69(5), 353–361. doi:doi:10.1038/ja.2015.116es_ES
dc.source.bibliographicCitationO’Neill, J. (2016). Book review: Tackling drug-resistant infections globally. WHO. Archives of Pharmacy Practice. doi:https://doi.org/10.4103/2045-080x.186181es_ES
dc.source.bibliographicCitationOluyombo, O. P. (2019). Competition in Biofilms between Cystic Fibrosis Isolates of Pseudomonas aeruginosa Is Shaped by R-Pyocins. mBio, 10, e01828-18. doi: doi:10.1128/mbio.01828-18es_ES
dc.source.bibliographicCitationOrr Weaver, T. L. (1983). Yeast recombination: The association between double-strand gap repair and crossing-over. Proceedings of the National Academy of Sciences of the United States of America, 80, 4417-4421. doi:https://doi.org/10.1073/pnas.80.14.4417es_ES
dc.source.bibliographicCitationPeix, A. R.-B. (2018). The current status on the taxonomy of Pseudomonas revisited: An update. Infection, Genetics and Evolution, 57, 106-116. doi:https://doi.org/10.1016/j.meegid.2017.10.026es_ES
dc.source.bibliographicCitationPerez, R. H. (2014). Novel bacteriocins from lactic acid bacteria (LAB): Various structures and applications. Microbial Cell Factories, 13((Suppl 1):S3), (Suppl 1):S3. doi:https://doi.org/10.1186/1475-2859-13-S1-S3es_ES
dc.source.bibliographicCitationPérez, R. H. (2018). Circular and leaderless bacteriocins: Biosynthesis, mode of action, applications, and prospects. Frontiers in Microbiology, 9, 1-18. doi:https://doi.org/10.3389/fmicb.2018.02085es_ES
dc.source.bibliographicCitationPlessis, A. y. (1993). Multiple tandem integrations of transforming DNA sequences in yeast chromosomes suggest a mechanism for integrative transformation by homologous recombination. Gene, 134(1), 41-50. doi:https://doi.org/10.1016/0378-1119(93)90172-Yes_ES
dc.source.bibliographicCitationRegev, A. K. (1996). Synergistic activity of a Bacillus thuringiensis δ-endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae. Applied and Environmental Microbiology, 62(10), 3581–3586.es_ES
dc.source.bibliographicCitationRestrepo, M. A. (2003). Enfermedades Infecciosas. Medellin, Colombia: Corporación para Investigaciones Biologicas.es_ES
dc.source.bibliographicCitationSaati-Santamaría Z, L.-M. R.-G.-M.-F. (2018). Discovery of phloeophagus beetles as a source of pseudomonas strains that produce potentially new bioactive substances and description of pseudomonas bohemica sp. nov. Frontiers in Microbiology, 9. doi:https://doi.org/10.3389/fmicb.2018.00913es_ES
dc.source.bibliographicCitationSambrook, J. (2001). Molecular cloning: a laboratory manual. Cold Spring Harb Lab Press Cold Spring Harb NY, 999.es_ES
dc.source.bibliographicCitationSasaki, M. L. (2010). Genome destabilization by homologous recombination in the germ line. Nature, 11, 182-195. doi:https://doi.org/10.1038/nrm2849.es_ES
dc.source.bibliographicCitationSchroeder, M. B. (2017). The complex relationship between virulence and antibiotic resistance. Genes, 39. doi:https://doi.org/10.3390/genes8010039es_ES
dc.source.bibliographicCitationSharma, G. D. (2018). Antibacterial Activity, Cytotoxicity, and the Mechanism of Action of Bacteriocin from Bacillus subtilis GAS101. Medical Principles and Practice, 27(2), 186-192es_ES
dc.source.bibliographicCitationStein, T. (2005). Bacillus subtilis antibiotics: Structures, syntheses and specific functions. Molecular Microbiology, 56(4), 845–857. doi:https://doi.org/10.1111/j.1365-2958.2005.04587.xes_ES
dc.source.bibliographicCitationSung, P. M. (2000). Recombination factors of Saccharomyces cerevisiae. Elsevier, 451, 257-275. doi:https://doi.org/10.1016/S0027-5107(00)00054-3es_ES
dc.source.bibliographicCitationSymington, L. S. (2014). Mechanisms and Regulation of Mitotic Recombination in Saccharomyces cerevisiae. Genetics, 198, 795–835. doi:https://doi.org/10.1534/genetics.114.166140es_ES
dc.source.bibliographicCitationTribelli, P. S.-L. (2015). Novel essential role of ethanol oxidation genes at low temperature revealed by transcriptome analysis in the antarctic bacterium pseudomonas extremaustralis. PLoS ONE, 10(12), 1-19. doi:https://doi.org/10.1371/journal.pone.0145353es_ES
dc.source.bibliographicCitationTribelli, P. y. (2018). Reporting Key Features in Cold-Adapted Bacteria. life, 8(1), 8. doi:https://doi.org/10.3390/life8010008es_ES
dc.source.bibliographicCitationvan Leeuwen, J. A. (2015). Rapid and Efficient Plasmid Construction by Homologous Recombination in Yeast. Cold Spring Harbor Protocols, 853-862. doi:https://doi.org/10.1101/pdb.prot085100es_ES
dc.source.bibliographicCitationVasilchenko, A. S. (2018). Pore-forming bacteriocins: structural–functional relationships. Springer, 201(2), 147-154. doi:https://doi.org/10.1007/s00203-018-1610-3es_ES
dc.source.bibliographicCitationWHO. (2001). Estrategia mundial de la OMS para contener la resistencia a los antimicrobianos. Revista Panamericana de Salud Publica/Pan American Journal of Public Health, 10(4), 284–294. doi:https://doi.org/10.1590/s1020-49892001001000014es_ES
dc.source.bibliographicCitationWHO. (2017). Global Antimicrobial Resistance Surveillance System (GLASS) Report. Geneva: Organization World Health. doi:https://doi.org/ISBN 978-92-4-151344-9es_ES
dc.source.bibliographicCitationWinn, W. C., Allen, S. D., Janda, W. M., Koneman, E. W., Procop, G. W., Schrenckenberger, P. C., & Woods, G. L. (2008). Koneman. Diagnóstico microbiológico. Panamericana.es_ES
dc.source.bibliographicCitationZheng, S. y. (2018). Diversified transporters and pathways for bacteriocin secretion in gram-positive bacteria. Springer, 102(10), 4243–4253. doi:https://doi.org/10.1007/s00253-018-8917-5es_ES
dc.source.bibliographicCitationZor, T. y. (1996). Linearization of the Bradford Protein Assay Increases Its Sensitivity: Theoretical and Experimental Studies. Analytical Biochemistry, 236, 302-308. doi:doi:10.1006/abio.1996.0171es_ES
dc.source.bibliographicCitationZou, J. J. (2018). Strategies for screening, purification and characterization of bacteriocins. International Journal of Biological Macromolecules, 117, 781-789. doi:https://doi.org/10.1016/j.ijbiomac.2018.05.233es_ES
dc.description.degreenameMagister en Bioquímicaes_ES
dc.description.degreelevelMaestríaes_ES
dc.publisher.facultyFacultad de Cienciases_ES
dc.description.notesPresenciales_ES
dc.publisher.campusBogotá - Circunvalar-
Aparece en las colecciones: Maestría en Bioquímica

Ficheros en este ítem:
Fichero Tamaño  
2020SandraMilenaLandinezVelandia.pdf1.7 MBVisualizar/Abrir
2020AutorizacióndeAutores.pdf
  Restricted Access
121.79 kBVisualizar/Abrir  Request a copy


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons