Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)Calero Arellano, DiegoMartínez Varón, Camilo AndrésRuíz Ríos, Santiago2022-05-072022-05-072021-11-23http://repositorio.uan.edu.co/handle/123456789/6477Regenerative chatter is a form of dynamic instability present in machining processes. This factor affects the efficiency of the cut, increases the wear of the tool, decreases the quality of the piece and presents abnormal noise during the process. This happens when the cutting force creates a displacement between the tool, which has an elastic nature, and the workpiece, causing an increase in the thickness of the chip, experiencing waves on its internal and external surfaces due to the vibrations present and past. This project presents a method for controlling the machining parameters of a CNC milling machine taking into account the lobe diagrams to determine the stability and chatter reduction.El chatter regenerativo es una forma de inestabilidad dinámica presente en los procesos de maquinado. Este factor afecta la eficiencia del corte, aumenta el desgaste de la herramienta, dismunuye la calidad de la pieza y presenta ruido anormal durante el proceso. Esto sucede cuando la fuerza de corte crea un desplazamiento entre la herramienta, que tiene una naturaleza elástica, y la pieza de trabajo, ocasionando un aumento en el grosor de la viruta, experimentando ondas en sus superficies internas y externas debido a las vibraciones presentes y pasadas. Este proyecto presenta un método para el control de los parámetros de maquinado de una fresadora CNC teniendo en cuenta los diagramas de lóbulos para determinar la estabilidad y la reducción del chatter.spaAcceso abiertoChatterVirutaCNCControlDiagrama de lóbulosEstabilidad620.1Modificación de parámetros de maquinado de un sistema cnc para evitar la aparición de chatter en un proceso de fresadoTrabajo de grado (Pregrado y/o Especialización)ChatterChipCNCControlLobe diagramStabilityinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2M. Jasiewicz and K. Mi¸adlicki, “An integrated CNC system for chatter suppression in turning,” Advances in Production Engineering And Management, vol. 15, no. 3, pp. 318– 330, 2020.S. Tobias and W. Fishwick, “Theory of regenerative machine tool chatter,” The engineer, vol. 205, no. 7, pp. 199–203, 1958.Q. F. Alex Iglesias, “Machining improvement on flexible fixture through viscoelastic damping layer,” p. 179, nov 2013. [Online]. Available: https://www.diva-portal.org/ smash/get/diva2:660817/FULLTEXT08{#}page=179Y. Altintaş and E. Budak, “Analytical Prediction of Stability Lobes in Milling,” CIRP Annals - Manufacturing Technology, vol. 44, no. 1, pp. 357–362, 1995.F. Campa, L. L. De Lacalle, and A. Celaya, “Chatter avoidance in the milling of thin floors with bull-nose end mills: Model and stability diagrams,” International Journal of Machine Tools and Manufacture, vol. 51, no. 1, pp. 43–53, 2011.Y. Yang, J. Munoa, and Y. Altintas, “Optimization of multiple tuned mass dampers to suppress machine tool chatter,” International Journal of Machine Tools and Manufacture, vol. 50, no. 9, pp. 834–842, 2010.G. Quintana and J. Ciurana, “Chatter in machining processes: A review,” International Journal of Machine Tools and Manufacture, vol. 51, no. 5, pp. 363–376, 2011.D. Li, H. Cao, and X. Chen, “Fuzzy control of milling chatter with piezoelectric actuators embedded to the tool holder,” Mechanical Systems and Signal Processing, vol. 148, p. 107190, 2021.E. Mizrachi, S. Basovich, and S. Arogeti, “Robust time-delayed h synthesis for active control of chatter in internal turning,” International Journal of Machine Tools and Manufacture, vol. 158, p. 103612, 2020.S. Wan, X. Li, W. Su, J. Yuan, and J. Hong, “Active chatter suppression for milling process with sliding mode control and electromagnetic actuator,” Mechanical Systems and Signal Processing, vol. 136, p. 106528, 2020.instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/