Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)Calero Arellano, DiegoMolina Giraldo, Valeryn MelissaSanta Cañas, Cristhian David2021-10-212021-10-212021-06-03http://repositorio.uan.edu.co/handle/123456789/5080This paper proposed a simulation of a chatter detection system, using the measurement of electrical parameters, which consists of a construction of a block model of a DC engine in the MATLAB-programSIMULINK for Paxton/Patterson milling machine tool, obtaining as a result the behavior of the system in order to validate this model by means of the analyses carried out to the fast transforms of Fourier and to the diagrams of lobes of stability to determine the points where the chatter exists in the process of millingEn el presente documento se propuso una simulación de un sistema de detección de chatter, por medio de la medición de parámetros eléctricos, la cual consiste de una construcción de un modelo de bloques de un motor DC en el programa MATLAB-SIMULINK para la herramienta de la fresadora Paxton/Patterson, obteniendo como resultado el comportamiento del sistema con el fin de validar este modelo por medio de los análisis realizados a las transformadas rápidas de Fourier y a los diagramas de lóbulos de estabilidad para determinar los puntos en donde existe el chatter en el proceso de fresado.spaAcceso abiertoCNCChatterModelo dinámicoMotor eléctricoFresadoraSimulación de un sistema de detección de chatter en la fresadora Paxton/Patterson a través de la medición de los parámetros eléctricos del motor de la máquina herramientaTrabajo de grado (Pregrado y/o Especialización)CNCChatterDynamic modelElectric motorMilling machineinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2S. S. Rao, Vibration of continuous systems. Wiley Online Library, 2007, vol. 464G. Quintana and J. Ciurana, “Chatter in machining processes: A review,” International Journal of Machine Tools and Manufacture, vol. 51, no. 5, pp. 363–376, 2011.S. Tobias and W. Fishwick, “Theory of regenerative machine tool chatter,” The engineer, vol. 205, no. 7, pp. 199–203, 1958.E. Mizrachi, S. Basovich, and S. Arogeti, “Robust time-delayed h synthesis for active control of chatter in internal turning,” International Journal of Machine Tools and Manufacture, vol. 158, p. 103612, 2020.Y. Altintaş and E. Budak, “Analytical prediction of stability lobes in milling,” CIRP annals, vol. 44, no. 1, pp. 357–362, 1995.F. Campa, L. L. De Lacalle, and A. Celaya, “Chatter avoidance in the milling of thin floors with bull-nose end mills: Model and stability diagrams,” International Journal of Machine Tools and Manufacture, vol. 51, no. 1, pp. 43–53, 2011.Y. Yang, J. Munoa, and Y. Altintas, “Optimization of multiple tuned mass dampers to suppress machine tool chatter,” International Journal of Machine Tools and Manufacture, vol. 50, no. 9, pp. 834–842, 2010.D. Li, H. Cao, and X. Chen, “Fuzzy control of milling chatter with piezoelectric actuators embedded to the tool holder,” Mechanical Systems and Signal Processing, vol. 148, p. 107190, 2021.S. Wan, X. Li, W. Su, J. Yuan, and J. Hong, “Active chatter suppression for milling process with sliding mode control and electromagnetic actuator,” Mechanical Systems and Signal Processing, vol. 136, p. 106528, 2020.D. Aslan and Y. Altintas, “On-line chatter detection in milling using drive motor current commands extracted from cnc,” International Journal of Machine Tools and Manufacture, vol. 132, pp. 64–80, 2018.T. Augspurger, Thermal Analysis of the Milling Process. Apprimus Wissenschaftsverlag, 2018instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/