Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)Malagon Bernal, Edwin AndresCandela Londoño, Maria Fernanda2021-02-182021-02-182020-11-20http://repositorio.uan.edu.co/handle/123456789/1496InternaInhibition of pancreatic lipase with Orlistat was used to show the correlation between experimental procedures and computational simulations. Both methods are important to understand the kinetics and the inhibition mechanism, and they complement each other in terms of the scope of the results obtained.The enzymatic activity of porcine pancreatic lipase was evaluated by determining kinetic parameters, such as the Michaelis constant- Menten and maximum speed, values corresponding to 61mM and 74µM / min, respectively. Orlistat inhibition tests were performed to obtain Lineweaver-Burk and Dixon graphs, complementary tools with which competitive inhibition was determined. In addition, a molecular coupling was included, to visualize the enzyme-Orlistat binding, along with a lipase sequence analysis to compare the structure of the enzyme in different organisms.La inhibición de la lipasa pancreática con Orlistat se utilizó para mostrar la correlación entre procedimientos experimentales y simulaciones computacionales. Ambos métodos son importantes para entender la cinética y el mecanismo de inhibición, y se complementan en cuanto al alcance de los resultados obtenidos La actividad enzimática de la lipasa pancreática porcina se evaluó con la determinación de los parámetros cinéticos, tales como la constante de Michaelis-Menten y la velocidad máxima, valores que corresponden a 61mM y 74µM/min, respectivamente. Los ensayos de inhibición con Orlistat se realizaron para obtener las gráficas de Lineweaver-Burk y Dixon, herramientas complementarias con las que se determinó una inhibición competitiva. Además, se incluyó un acoplamiento molecular, para visualizar la interacció enzima-Orlistat, junto con un análisis de secuencias de lipasas para comparar la estructura de la enzima en diferentes organismos.spaAcceso abiertoOrlistat, lipasa, inhibición, dockingInhibición de la lipasa porcina por orlistat: un ejercicio para entender la cinética enzimática, el mecanismo de acción del fármaco y la estructura enzimáticaTrabajo de grado (Pregrado y/o Especialización)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Houde, A.; Kademi, A.; Leblanc, D. Lipases and Their Industrial Applications. An Overview. Appl. Biochem. Biotechnol. 2004, 118 (1-3), 155-170.Fan, X.; Niehus, X.; Sandoval, G. Lipases as biocatalyst for biodiesel production. Methods Mol. Biol. 2012, 861, 471-483Lia, S.; Pana, J.; Hua, X.; Zhangb, Y.; Gonga, D.; Zhang, G. Kaempferol inhibits the activity of pancreatic lipase and its synergistic effect with orlistat. J. Funct. Foods. 2020, 104041Heck, A.M.; Yanocski, J.A.; Calis, K.A. Orlistat, a New Lipase Inhibitor for the Management of Obesity. Pharmacotherapy. 2000, 20(3), 270-279Deng, H. Li, W. Monoacylglycerol lipase inhibitors: modulators for lipid metabolism in cancer malignancy, neurological and metabolic disorders. Acta Pharmac. Sin. B. 2020, 10(4):582-602Karup, S.; Sakharkar, P. Three-Dimensional Visualization of Kinase Inhibitors as Therapeutically Relevant Examples To Reinforce Types of Enzyme Inhibitors. J. Chem. Educ. 2019, 96 (2), 296-303Rudnitskaya, A.; Török, B.; Török, D. Molecular Docking of Enzyme Inhibitors. Biochem. Mol. Biol. Edu. 2010, 38(4), 261-265.Whiteley, C. G. (2000). Enzyme kinetics: partial and complete uncompetitive inhibition. Biochemical Education, 28(3), 144-147.Locock, K., Tran, H., Codd, R., & Allan, R. (2015). Hands-On Approach to Structure Activity Relationships: The Synthesis, Testing, and Hansch Analysis of a Series of Acetylcholineesterase Inhibitors. Journal of Chemical Education, 92(10), 1745-1750Lewis, D.; Liu, D. Direct Measurement of Lipase Inhibition by Orlistat Using a Dissolution Linked In Vitro Assay. Clin Pharmacol Biopharm. 2012, 1: 1000103.Guo, J.; Cheng, C.; Wanga, S.; Huang, X. A convenient test for lipase activity in aqueous-based solutions. Enzyme Microb. Technol. 2015, 71, 8-12Chi, H.; Jain, H. Teaching Computing to STEM Students via Visualization Tools. Procedia Comput. Sci. 2011, 4, 1937-1943.Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T. Zurek, E.; Hutchison, G.R. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform, J. Cheminfrmatics. 2012, 4, 1–17.Grosdidier, A.; Zoete, V.; Michielin, O. Swissdock a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 2011, 39, 270–277Pettersen, E.; Goddard, T.; Huang, C. Couch, G., Greenblatt, D.; Meng, E. Ferrin, T. UCSF Chimera−A visualization system for exploratory research and analysis. J. Compt. Chem. 2005, 25, 1605-1612.Burlingham, B.; Widlanski, T. An Intuitive Look at the Relationship of Ki and IC50: A More General Use for the Dixon Plot. J. Chem. Educ. 2003, 80 (2), 214-218.Liu, T.; Liu, X.; Chen, Q.; Shi, Y. Lipase Inhibitors for Obesity: A Review. Biomed. Pharmacother. 2020, 128, 110314Haworth, N.; Martin, L. Biomolecules Come Alive: A Computer-Based Laboratory Experiment for Chemistry Students. J. Chem. Educ. 2018, 95 (12), 2256-2262.Worrall, A.; Bergstrom, P.; Young, D.; Wormald, S. Cahill, S.; Stewart, M. Benefits of Simulations as Remote Exercises During the COVID-19 Pandemic: An Enzyme Kinetics Case Study. J. Chem. Educ. 2020, in press.