Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)Hernández Vásquez, José DanielSarmiento Rangel, Jeffrey ManuelTovar Alandete, Marco Antonio2024-03-092024-03-092023-11-27http://repositorio.uan.edu.co/handle/123456789/9579This investigative article was motivated by the challenges imposed in the industry of thermal machines in which, more and more, alternatives are studied that allow to know the thermal and hydrodynamic performance of the working fluids. In particular, this work aimed to characterize the effect of the fouling factor in a heat exchanger operated in parallel and countercurrent flow.Este trabajo investigativo fue motivado por los desafíos impuestos en la industria de máquinas térmicas en las cuales, cada vez más, se estudian alternativas que permitan conocer el desempeño térmico e hidrodinámicos de los fluidos de trabajo. En particular, este trabajo tuvo por objetivo caracterizar el efecto del factor de incrustación en un intercambiador de calor operado en flujo paralelo y contracorriente.This investigative work was motivated by the challenges imposed in the industry of thermal machines in which, increasingly, alternatives are being studied that allow knowing the thermal and hydrodynamic performance of the working fluids. In particular, this work aimed to characterize the effect of the fouling in a heat exchanger operated in parallel flow and countercurrent.spaAcceso abiertoEnergíaIntercambiador de calorflujo en paraleloflujo en contracorrientefactor de incrustaciónEfecto del factor de incrustación en un intercambiador de calor operado en flujo paralelo y contracorrienteTrabajo de grado (Pregrado y/o Especialización)Heat exchangerparallel-flowcounter-flow, fouling factorthermal efficiencyinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2ALI, U. et al. Flow-induced vibrations of single and multiple heated circular cylinders: A review. Energies. MDPI, , 1 dez. 2021. AWAD, M. M. Fouling of Heat Transfer Surfaces. In: BELMILOUDI, A. (Ed.). United Kingdom : [s.n.]. p. 505–542. BENOIT, H. et al. Review of heat transfer fluids in tube-receivers used in concentrating solar thermal systems: Properties and heat transfer coefficients. Renewable and Sustainable Energy Reviews. Elsevier Ltd, , 1 mar. 2016. BOURIS, D. et al. Design of a novel, intensified heat exchanger for reduced fouling rates. International Journal of Heat and Mass Transfer, v. 48, n. 18, p. 3817– 3832, ago. 2005. BUTTERWORTH, D. Design of shell-and-tube heat exchangers when the fouling depends on local temperature and velocity. United Kingdom: [s.n.]. Disponible en: <www.elsevier.com/locate/apthermeng>. BYRNE, R. C. Standards of the Tubular Exchanger Manufacturer’s Association [TEMA]. 10. ed. New York: Tubular Exchanger manufactures Assciation , 2019. Cengel, Y. A., & Ghajar, A. J. (2014). Transferencia de calor y masa: Un enfoque práctico (4.a ed.). McGraw-Hill. GUERRERO, M. et al. Evaluation of the behavior of an innovative thermally activated building system (TABS) with PCM for an efficient design. CLIMA , 2019. JUSOH, M. A. M. et al. Preliminary Design of a Mini Hydroelectric System. Procedia - Social and Behavioral Sciences, v. 129, p. 198–205, maio 2014. KAKAC, S.; LIU, H. Heat Exchangers Selection, Rating, And Thermal Design Second Edition. 2. ed. Florida: CRC Press, 2002.instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/