Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0)Murillo, Gladys AngélicaRincón, Rolando JavierLota Mendoza, Camila Alejandra2021-02-182021-02-182020-11-17http://repositorio.uan.edu.co/handle/123456789/1492InternaSilver nanoparticles are a novel treatment against bacterial infections that exhibit resistance against traditional antibiotic agents resulting in infectious diseases of complex evolution. However, this type of nanoparticles exhibit cytotoxicity on eukaryotic cells, as well as are a substance that generates contamination in the water where it has been used, due to lack of a mechanism for its removal from the environment. As a solution alternative to these problems, it is proposed to develop a nanocomposite consisting of a magnetic core of iron oxide, coated with silica, and decorated with silver nanoparticles. The capacity of the nanostructured compound produced as a bactericidal agent, was evaluated on Gram positive strains and Gram Negatives. The characterization was carried out through by scanning electron microscopy and scanning transmission electron microscopy to determine its morphology, its chemical composition was determined semi-qualitatively by dispersed energy X-ray spectroscopy and its magnetic properties by vibrant sample magnetometry. The study showed that developed nanocomposites can be applied as bactericidal and/or bacteriostatic agents, being an alternative in disinfection processes for microbial control. Finally, by their magnetic property they would facilitate their removal from the environment in which they have been applied, thus allowing to perform a disinfection process without adding additional contaminants to the environment, preventing the accumulation of these in the environment.Las nanopartículas de plata se han ido constituyendo como un tratamiento novedoso contra infecciones bacterianas que presentan resistencia contra los agentes antibióticos tradicionales generando como consecuencia enfermedades infecciosas de evolución compleja. Sin embargo, este tipo de nanopartículas exhiben citotoxicidad sobre células eucariotas, así como generan contaminación en el agua donde han sido empleadas, por falta de un mecanismo para su remoción del medio. Como una alternativa de solución a estas problemáticas, se propone el desarrollo de un nanocompuesto constituido por un núcleo magnético de óxido de hierro, recubierto con sílica y decorado con nanopartículas de plata. La capacidad del compuesto nanoestructurado producido como agente bactericida, fue evaluado sobre cepas Gram positivas y Gram Negativas. La caracterización se realizó a través de microscopia electrónica de barrido y microscopía electrónica de transmisión de barrido para determinar su morfología, su composición química fue determinada de forma semicuantitativa por espectroscopía de rayos X de energía dispersa y las propiedades magnéticas por magnetometría de muestra vibrante. El estudio evidenció que los nanocompuestos desarrollados pueden aplicarse como agentes bactericidas y/o bacteriostáticos, siendo una alternativa en los procesos de desinfección para el control microbiano. Finalmente, por su propiedad magnética facilitarían su remoción del medio en el que han sido aplicadas, permitiendo así realizar un proceso de desinfección sin adicionar agentes contaminantes adicionales al medio, previniendo la acumulación de estos en el ambiente.spaAcceso abiertoNanocompuesto magnético de plata, biocida, bacteriostático, bacterias multirresistentes, antibióticos.Síntesis y actividad antibacterial de un nanocompuesto NPIO@SiO2/Ag, evaluando su citotoxicidad en células eucariotas.Trabajo de grado (Pregrado y/o Especialización)Magnetic silver nanocomposite, biocide, bacteriostatic, multi-resistant bacteria, antibiotics.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Alejo Riveros, J. C., Cortes Muños, M. S., Correa Lizarazo, D. X., Klotz Ceberio, B., Herrera Arias, F. C., Martínez Galán, J. P., Rey Rodríguez, J. F., & Vanegas López, M. C. (2011). Evaluación de riesgos de Staphylococcus aureus enterotoxigénico en alimentos preparados no industriales en colombia (Issue November). https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/IA/INS/Er-staphylococcus.pdfÁlvarez, D., Negrón, S., Barrionuevo, J., & Romero, P. (2020). Infecciones Urinarias en pacientes geriátricos por presencia de Escherichia coli y Klebsiella spp productoras de betalactamasas de espectro extendido Urinary Infections in geriatric patients by presence of Escherichia coli y Klebsiella spp producers of ex. FACSalud, 4, 14–22.Arzate, C. (2016). Efectos de citotoxicidad en microorganismos patógenos expuestos a nanopartículas de plata y óxido de zinc. 48.Barros, G., Melo, C., Oliveira, M., Silva, J., Santos, R., & Oliveira, S. (2020). Impacto financiero de la terapia con antibióticos en la resistencia a múltiples fármacos bacterianos en un hospital de emergencia en Pernambuco, Brasil. Ars Pharmaceutica (Internet), 61(2), 121–126. https://doi.org/10.30827/ars.v61i2.115337Belaroui, L. S., Ouali, A., Bengueddach, A., Lopez Galindo, A., & Peña, A. (2018). Adsorption of linuron by an Algerian palygorskite modified with magnetic iron. Applied Clay Science, 164(March), 26–33. https://doi.org/10.1016/j.clay.2018.03.021Ben, Y., Fu, C., Hu, M., Liu, L., Wong, M. H., & Zheng, C. (2019). Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environmental Research, 169(November 2018), 483–493. https://doi.org/10.1016/j.envres.2018.11.040Botelho, J., Grosso, F., & Peixe, L. (2019). Antibiotic resistance in Pseudomonas aeruginosa – Mechanisms, epidemiology and evolution. Drug Resistance Updates, 44(April), 100640. https://doi.org/10.1016/j.drup.2019.07.002Calderón, G., & Aguilar, L. (2016). Infectología Resistencia Antimicrobiana : Microorganismos más resistentes y antibióticos. Revista Médica de Costa Rica y Centroamérica LXXIII, 621, 757–763.Cardoso, P. (2016). Nanopartículas de plata: obtención, utilización como antimicrobiano e impacto en el área de la salud. Rev. Hosp. Niños (B. Aires), 58(260), 19–28. http://revistapediatria.com.ar/wp-content/uploads/2016/04/260-Nanopartículas-de-plata.pdfChang, T. Y., Chen, C. C., Cheng, K. M., Chin, C. Y., Chen, Y. H., Chen, X. A., Sun, J. R., Young, J. J., & Chiueh, T. S. (2017). Trimethyl chitosan-capped silver nanoparticles with positive surface charge: Their catalytic activity and antibacterial spectrum including multidrug-resistant strains of Acinetobacter baumannii. In Colloids and Surfaces B: Biointerfaces (Vol. 155). Elsevier B.V. https://doi.org/10.1016/j.colsurfb.2017.03.054Changanaqui Barrientos, K., Alvarado Iparraguirre, D. E., & Alarcón Cavero, H. A. (2019). Síntesis y caracterización de nanocompuestos Fe3O4/Ag: su efecto contra Enterobacter aerogenes y Enterococcus faecalis. Revista Colombiana de Química, 48(2), 33–39. https://doi.org/10.15446/rev.colomb.quim.v48n2.73724Chen, L. Q., Fang, L., Ling, J., Ding, C. Z., Kang, B., & Huang, C. Z. (2015). Nanotoxicity of silver nanoparticles to red blood cells: Size dependent adsorption, uptake, and hemolytic activity. Chemical Research in Toxicology, 28(3), 501–509. https://doi.org/10.1021/tx500479mChoi, Y. J., Gurunathan, S., & Kim, J. H. (2018). Graphene oxide-silver nanocomposite enhances cytotoxic and apoptotic potential of salinomycin in human ovarian cancer stem cells (OvCSCs): A novel approach for cancer therapy. International Journal of Molecular Sciences, 19(3). https://doi.org/10.3390/ijms19030710Dadfar, S. M., Roemhild, K., Drude, N. I., von Stillfried, S., Knüchel, R., Kiessling, F., & Lammers, T. (2019). Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Advanced Drug Delivery Reviews, 138, 302–325. https://doi.org/10.1016/j.addr.2019.01.005Dai, X., Zhao, Y., Li, J., Li, S., Lei, R., Chen, X., Zhang, X., & Li, C. (2018). Thiazolium-derivative functionalized silver nanocomposites for suppressing bacterial resistance and eradicating biofilms. New Journal of Chemistry, 42(2), 1316–1325. https://doi.org/10.1039/c7nj03251jDakal, T. C., Kumar, A., Majumdar, R. S., & Yadav, V. (2016). Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. 7(November), 1–17. https://doi.org/10.3389/fmicb.2016.01831Daşbaşı, B. (2017). The Fractional-Order mathematical modeling of bacterial resistance against multiple antibiotics in case of local bacterial infection. SAÜ Fen Bilimleri Enstitüsü Dergisi, 21(3), 1–1. https://doi.org/10.16984/saufenbilder.298934Dey Bhowmik, A., Bandyopadhyay, A., & Chattopadhyay, A. (2019). Cytotoxic and mutagenic effects of green silver nanoparticles in cancer and normal cells: a brief review. Nucleus (India), 62(3), 277–285. https://doi.org/10.1007/s13237-019-00293-0Dhafer, C. E. B., Dhahri, M., Mezni, A., & Smiri, L. S. (2018). Surface‐enhanced Raman scattering study of PP /Ag nanocomposite developed to prevent postsurgery infection. Raman Spectrosc, 7.Díaz, S., Martínez, J., & Colino, C. (2018). Incorporación de agentes anti-infecciosos en nanopartículas metálicas de oro y chitosan | DÍAZ SÁNCHEZ | FarmaJournal. http://revistas.usal.es/index.php/2445-1355/article/view/18645Echeverri-Toro, L. M., Rueda, Z. V., Maya, W., Agudelo, Y., & Ospina, S. (2012). Klebsiella pneumoniae multi-resistente, factores predisponentes y mortalidad asociada en un hospital universitario en Colombia. Revista Chilena de Infectología, 29(2), 175–182. https://doi.org/10.4067/S0716-10182012000200009Escobar, A. M., Pizzio, L. R., & P. Romanelli, G. (2018). Catalizadores magnéticos basados en óxidos de hierro: síntesis, propiedades y aplicaciones. Ciencia En Desarrollo, 10(1). https://doi.org/10.19053/01217488.v10.n1.2019.8811Fang, W., Zheng, Q., Fang, Y., & Huang, H. (2019). Facile synthesis of silver-decorated magnetic nanospheres used as effective and recyclable antibacterial agents. Current Applied Physics, 19(2), 114–119. https://doi.org/10.1016/j.cap.2018.11.008Freire, P. L. L., Albuquerque, A. J. R., Farias, I. A. P., da Silva, T., Santos Aguiar, J., Galembeck, A., Flores, M. A. P., Sampaio, F. C., Stamford, T. C. M., & Rosenblatt, A. (2016). Antimicrobial and cytotoxicity evaluation of colloidal chitosan – silver nanoparticles – fluoride nanocomposites. International Journal of Biological Macromolecules, 93, 896–903. https://doi.org/10.1016/j.ijbiomac.2016.09.052Fuentes García, J. A., Díaz Cano, A. I., Guillen Cervantes, A., & Santoyo Salazar, J. (2018). Magnetic domain interactions of Fe3O4 nanoparticles embedded in a SiO2 matrix. Scientific Reports, 8(1), 2–11. https://doi.org/10.1038/s41598-018-23460-wGaviria, A., Correa Luis, Davila, C., Burgos, G., & Gómez Carolina. (2018). Plan nacional de respuesta a la resistencia a los antimicrobianos. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/MET/plan-respuesta-resistencia-antimicrobianos.pdfGhiuță, I., Cristea, D., Croitoru, C., Kost, J., Wenkert, R., Vyrides, I., Anayiotos, A., & Munteanu, D. (2018). Characterization and antimicrobial activity of silver nanoparticles, biosynthesized using Bacillus species. Applied Surface Science, 438, 66–73. https://doi.org/10.1016/j.apsusc.2017.09.163Gonzáles Flores, M. (2017). Efecto bactericida de nanopartículas de plata y desinfectantes sobre bacterias multirresistentes. Universidad Autónoma de México.Goyeneche, L. M. (2018). Determinación del tamaño de rayos X ( Determination of particle size by X-Ray diffraction ). Universidad de Cantabria.Guadarrama-Reyes, S. C. (2013). Efecto antibacteriano de las nanopartículas de plata versus clorhexidina sobre Streptococcus mutans y Lactobacillus casei. 151.Gupta, N., Pant, P., Gupta, C., Goel, P., Jain, A., Anand, S., & Pundir, A. (2018). Engineered magnetic nanoparticles as efficient sorbents for wastewater treatment: a review. Materials Research Innovations, 22(7), 434–450. https://doi.org/10.1080/14328917.2017.1334846Happy Agarwal, Menon, S., Venkat Kumar, S., & Rajeshkumar, S. (2018). Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chemico-Biological Interactions, 286(March), 60–70. https://doi.org/10.1016/j.cbi.2018.03.008Herrera, M. (2018). Aumentó cifra de bacterias resistentes a los antibióticos en Colombia | La FM. https://www.lafm.com.co/salud/en-colombia-se-desperdician-9-millones-de-toneladas-de-alimentos-faoHsieh, P. W., Tseng, C. L., & Kuo, D. H. (2015). Preparation of SiO2-protecting metallic Fe nanoparticle/SiO2 composite spheres for biomedical application. Materials, 8(11), 7691–7701. https://doi.org/10.3390/ma8115416Huang, D., Yan, X., Yan, M., Zeng, G., Zhou, C., Wan, J., Cheng, M., & Xue, W. (2018). Graphitic Carbon Nitride-Based Heterojunction Photoactive Nanocomposites: Applications and Mechanism Insight [Review-article]. ACS Applied Materials and Interfaces, 10(25), 21035–21055. https://doi.org/10.1021/acsami.8b03620IDDEX. (2018). Guía microbiológica para interpretar la concentración mínima inhibitoria (CMI). Cmi, 3. https://www.idexx.es/files/mic-guía-microbiológica-es.pdfIvashchenko, O., Woźniak, A., Coy, E., Peplinska, B., Gapinski, J., & Jurga, S. (2017). Release and cytotoxicity studies of magnetite/Ag/antibiotic nanoparticles: An interdependent relationship. Colloids and Surfaces B: Biointerfaces, 152, 85–94. https://doi.org/10.1016/j.colsurfb.2017.01.009Juhas, M. (2019). Genomic Islands and the Evolution of Multidrug-Resistant Bacteria. Horizontal Gene Transfer, 143–153. https://doi.org/10.1007/978-3-030-21862-1_4Kane, S. N., Mishra, A., & Dutta, A. K. (2017). Magentite nanoparticle for arsenic remotion. Journal of Physics: Conference Series, 755(1). https://doi.org/10.1088/1742-6596/755/1/011001Khan, M. (Ed.). (2018). Silver Nanoparticles: Fabrication, Characterization and Applications (Vol. 1). Croatia. https://books.google.com.co/books?hl=es&lr=&id=iHuQDwAAQBAJ&oi=fnd&pg=PA71&dq=gravity+of+silver+nanocomposites&ots=RxqturpW6N&sig=wZ2_WWCgICxew43mbLy2dRln9AM&redir_esc=y#v=onepage&q=gravity of silver nanocomposites&f=falseKharisov, B. I., Dias, H. V. R., & Kharissova, O. V. (2019). Mini-review : Ferrite nanoparticles in the catalysis. Arabian Journal of Chemistry, 12(7), 1234–1246. https://doi.org/10.1016/j.arabjc.2014.10.049Kolavekar, S. B., Ayachit, N. H., Jagannath, G., NagaKrishnakanth, K., & Venugopal Rao, S. (2018). Optical, structural and Near-IR NLO properties of gold nanoparticles doped sodium zinc borate glasses. Optical Materials, 83(May), 34–42. https://doi.org/10.1016/j.optmat.2018.05.083Kulkarni, S. K. (2015). Nanotechnology : Principles and Practices (3rd Editio). Springer International Publishing.Lee, D. W., Fatima, H., & Kim, K. S. (2018). Preparation of silica coated magnetic nanoparticles for bioseparation. Journal of Nanoscience and Nanotechnology, 18(2), 1414–1418. https://doi.org/10.1166/jnn.2018.14888Li, Yan, Qin, T., Ingle, T., Yan, J., He, W., Yin, J. J., & Chen, T. (2017). Differential genotoxicity mechanisms of silver nanoparticles and silver ions. Archives of Toxicology, 91(1), 509–519. https://doi.org/10.1007/s00204-016-1730-yLi, Yanlin, Duan, W., Lu, X., Yang, S., & Wen, X. (2019). Synthesis of strawberry-like Fe3O4@SiO2@Ag composite colloidal particles for constructing responsive photonic crystals. Optical Materials, 94(May), 423–429. https://doi.org/10.1016/j.optmat.2019.06.002Lindmeier, C. (2018). OMS | Datos recientes revelan los altos niveles de resistencia a los antibióticos en todo el mundo. WHO. https://www.who.int/mediacentre/news/releases/2018/antibiotic-resistance-found/es/Liu, E., Zhang, M., Cui, H., Gong, J., Huang, Y., Wang, J., Cui, Y., Dong, W., Sun, L., He, H., & Yang, V. C. (2018). Tat-functionalized Ag-Fe3O4 nano-composites as tissue-penetrating vehicles for tumor magnetic targeting and drug delivery. Acta Pharmaceutica Sinica B, 8(6), 956–968. https://doi.org/10.1016/j.apsb.2018.07.012Lizarazo Salcedo, C. G., González Jiménez, E. E., Arias Portela, C. Y., & Guarguati Ariza, J. (2018). Nanomateriales: un acercamiento a lo básico Nanomaterials: Being Closer to Basics. In Nanomateriales: Artículo especial Med Segur Trab (Internet) (Vol. 64, Issue 251).LLamosa, D. (2018). Nanomundo (1st ed.). Universidad Antonio Nariño.López-Carrizales, M., Mendoza-Mendoza, E., Peralta-Rodriguez, R. D., Pérez-Díaz, M. A., Portales-Pérez, D., Magaña-Aquino, M., Aragón-Piña, A., Infante-Martínez, R., Barriga-Castro, E. D., Sánchez-Sánchez, R., Martínez-Castañon, G. A., & Martinez-Gutierrez, F. (2020). Characterization, antibiofilm and biocompatibility properties of chitosan hydrogels loaded with silver nanoparticles and ampicillin: an alternative protection to central venous catheters. Colloids and Surfaces B: Biointerfaces, 196. https://doi.org/10.1016/j.colsurfb.2020.111292López-Esparza, J., Francisco Espinosa-Cristobal, L., Donohue-Cornejo, A., & Reyes-López, S. Y. (2016). Antimicrobial activity of silver nanoparticles in polycaprolactone nanofibers against gram-positive and gram-negative bacteria. Industrial and Engineering Chemistry Research, 55(49), 12532–12538. https://doi.org/10.1021/acs.iecr.6b02300Masri, A., Anwar, A., Khan, N. A., Shahbaz, M. S., Khan, K. M., Shahabuddin, S., & Siddiqui, R. (2019). Antibacterial Effects of Quinazolin-4(3H)-One Functionalized-Conjugated Silver Nanoparticles. Antibiotics, 4, 19.Michael, F., & Christopher, W. (2009). Antibiotics for Emerging Pathogens. Science, 325(5944), 1089–1093. https://doi.org/10.1126/science.1159961Miranda, C. V., & Costa Almeida, R. (2020). A importância do farmacêutico na dispensação e controle de medicamentos classificados como antimicrobianos. Saúde Multidisciplinar, 1–12.Moghayedi, M., Goharshadi, E. K., Ghazvini, K., Ahmadzadeh, H., Ranjbaran, L., Masoudi, R., & Ludwig, R. (2017). Kinetics and mechanism of antibacterial activity and cytotoxicity of Ag-RGO nanocomposite. Colloids and Surfaces B: Biointerfaces, 159, 366–374. https://doi.org/10.1016/j.colsurfb.2017.08.001Nabila, M. I., & Kannabiran, K. (2018). Biosynthesis, characterization and antibacterial activity of copper oxide nanoparticles (CuO NPs) from actinomycetes. Biocatalysis and Agricultural Biotechnology, 15, 56–62. https://doi.org/10.1016/j.bcab.2018.05.011Nayak, D., Ashe, S., Rauta, P. R., Kumari, M., & Nayak, B. (2016). Bark extract mediated green synthesis of silver nanoparticles : Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Materials Science & Engineering C, 58, 44–52. https://doi.org/10.1016/j.msec.2015.08.022Neciosup Zavaleta, C. P., & Ulloa Zavaleta, J. L. (2019). Efecto del porcentaje molar de Ag y temperatura de recocido sobre el tamaño de grano y conductividad eléctrica en películas semiconductoras de ZnO por el método Sol-Gel. In Lexus (Vol. 4, Issue None). Universidad Nacional de Trujillo.OMS. (2017, September 20). Un informe de la OMS confirma que el mundo se está quedando sin antibióticos. 2. http://www.calvo.qb.fcen.uba.ar/proteinas.htmOng, C., Lim, J. Z. Z., Ng, C., Li, J. J., Yung, L. L., & Bay, B. (2013). Silver Nanoparticles in Cancer : Therapeutic Efficacy and Toxicity. 772–781.Ouahid Hessissen, A. (2016). Nanotecnología y sus potenciales aplicaciones en microbiología. Universidad de Sevilla.Padilla Cruz, A. L. (2018). Biosíntesis de nanopartículas bimetálicas (Ag-Fe), caracterización y evaluación de sus propiedades bactericidas.Palem, R. R., Saha, N., Shimoga, G. D., Kronekova, Z., Sláviková, M., & Saha, P. (2017). Chitosan–silver nanocomposites: New functional biomaterial for health-care applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 67(1), 1–10. https://doi.org/10.1080/00914037.2017.1291516Peralta, M. E., Ocampo, S., Funes, I. G., Medina, F. O., Parolo, M. E., & Carlos, L. (2020). Nanomaterials with tailored magnetic properties as adsorbents of organic pollutants from wastewaters. Inorganics, 8(4), 1–27. https://doi.org/10.3390/inorganics8040024Pieretti, J. C., Rolim, W. R., Ferreira, F. F., Lombello, C. B., Nascimento, M. H. M., & Seabra, A. B. (2020). Synthesis, Characterization, and Cytotoxicity of Fe3O4@Ag Hybrid Nanoparticles: Promising Applications in Cancer Treatment. Journal of Cluster Science, 31(2), 535–547. https://doi.org/10.1007/s10876-019-01670-0Piras, C. C., Mahon, C. S., & Smith, D. K. (2020). Self-Assembled Supramolecular Hybrid Hydrogel Beads Loaded with Silver Nanoparticles for Antimicrobial Applications. In Chemistry - A European Journal (Vol. 26, Issue 38, pp. 8452–8457). https://doi.org/10.1002/chem.202001349Porenczuk, A., Grzeczkowicz, A., Maciejewska, I., Gołaś, M., Piskorska, K., Kolenda, A., Gozdowski, D., Kopeć-swoboda, E., Granicka, L., & Olczak-kowalczyk, D. (2019). An initial evaluation of cytotoxicity , genotoxicity and antibacterial effectiveness of a disinfection liquid containing silver nanoparticles alone and combined with a glass-ionomer cement and dentin bonding systems. https://doi.org/10.17219/acem/76160Pósniak, M. (2020). Emerging Chemical Risks in the Work Environment (TAY, Vol. 1). Taylor & Francis Group. https://books.google.com.co/books?id=sZ7qDwAAQBAJ&pg=PA9&dq=nanolayers+(with+one+outer+nano-scale+dimension),+nanotubes+(two+outer+nano-scale+dimensions)+and+nanoparticles+(three+outer+nano-scale+dimensions)&hl=es&sa=X&ved=2ahUKEwjLvfzkub_rAhUsw1kKHYnzAksPuntes, V. (2015). Uso de nanopartículas de hierro en la digestión anaeróbica, una revolución que multiplica exponencialmente la producción de biogás . https://www.Retema.Es/.Rajeev, L. (2018). Antibiotic Discovery. Materials and Methods, 8. https://doi.org/10.13070/mm.en.8.2671Reyes, P. (2012). Síntesis y caracterización de nanopartículas de cobre y óxido de cobre y su incorporación en una matriz polimérica y el estudio de sus propiedades anti bacterianas [Centro de investigación en química aplicada]. https://ciqa.repositorioinstitucional.mx/jspui/bitstream/1025/166/1/Pamela Yajaira Reyes Rodriguez maestria.pdfRuíz, M., Cermeño, C., & Benites, E. (2019). Magnetite nanoparticles for reduction of hexavalent chrome in soil of an industrial park, Cerro Colorado - Arequipa. Journal of Nanotechnology, 3(1), 12–17.Sánchez, E. P., Núñez, D., Cruz, R. O., Torres, M. A., & Herrera, E. V. (2017). Simulación y Conteo de Unidades Formadoras de Colonias. ReCIBE, 6(1), 97–111. http://recibe.cucei.udg.mx/revista/es/vol6-no1/pdf/computacion06.pdfSánchez Lerma, L., Pavas Escobar, N. C., Rojas Gulloso, A., & Pérez Gutiérrez, N. (2016). Infecciones por Staphylococcus aureus resistente a la meticilina adquirido en la comunidad en pacientes de Villavicencio, Colombia. Revista Cubana de Medicina Tropical, 68(1), 0–0.Shah, A., Ali Buabeid, M., Arafa, E. S. A., Hussain, I., Li, L., & Murtaza, G. (2019). The wound healing and antibacterial potential of triple-component nanocomposite (chitosan-silver-sericin) films loaded with moxifloxacin. International Journal of Pharmaceutics, 564(April), 22–38. https://doi.org/10.1016/j.ijpharm.2019.04.046Silva Calpa, L. de R., Correia, T. O. F., Netto Ferreira, J. C., Kuriyama, S. N., Letichevsky, S., & de Avillez, R. R. (2020). Stable and highly active zero-valent iron-nickel nanofilaments/silica for the hexavalent chromium reduction. Environmental Nanotechnology, Monitoring and Management, 14, 100332. https://doi.org/10.1016/j.enmm.2020.100332Silva Santos, K., Barbosa, A. M., Da Costa, L. P., Pinheiro, M. S., Oliveira, M. B. P. P., & Ferreira Padilha, F. (2016). Silver nanocomposite biosynthesis: Antibacterial activity against multidrug-resistant strains of Pseudomonas aeruginosa and Acinetobacter baumannii. Molecules, 21(9), 1–7. https://doi.org/10.3390/molecules21091255Singh, M. K., & Mehata, M. S. (2019). Phase-dependent optical and photocatalytic performance of synthesized titanium dioxide (TiO2) nanoparticles. Optik, 193(June), 163011. https://doi.org/10.1016/j.ijleo.2019.163011Sobhani-Nasab, A., Zahraei, Z., Akbari, M., Maddahfar, M., & Hosseinpour-Mashkani, S. M. (2017). Synthesis, characterization, and antibacterial activities of ZnLaFe2O4/NiTiO3 nanocomposite. Journal of Molecular Structure, 1139, 430–435. https://doi.org/10.1016/j.molstruc.2017.03.069Ssekatawa, K., Byarugaba, D. K., Kato, C. D., Ejobi, F., Tweyongyere, R., Lubwama, M., Kirabira, J. B., & Wampande, E. M. (2020). Nanotechnological solutions for controlling transmission and emergence of antimicrobial-resistant bacteria, future prospects, and challenges: a systematic review. Journal of Nanoparticle Research, 22(5). https://doi.org/10.1007/s11051-020-04817-7Suslick, K. S., Didenko, Y., Fang, M. M., Hyeon, T., Kolbeck, K. J., McNamara, W. B., Mdleleni, M. M., & Wong, M. (1999). Acoustic cavitation and its chemical consequences. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 357(1751), 335–353. https://doi.org/10.1098/rsta.1999.0330Travieso, M., Rubio, A., Corzo, M., & Pino, O. (2018). Nanopartículas de plata obtenidas a partir del extracto residual de la hidrodestilación de Thymus vulgaris L. y su efecto sobre Xanthomonas phaseoli pv. phaseoli. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1010-27522018000300007Tung, L. M., Cong, N. X., Huy, L. T., Lan, N. T., Phan, V. N., Hoa, N. Q., Vinh, L. K., Thinh, N. V., Tai, L. T., Ngo, D. T., Mølhave, K., Huy, T. Q., & Le, A. T. (2016). Synthesis, characterizations of superparamagnetic Fe3O4-Ag hybrid nanoparticles and their application for highly effective bacteria inactivation. Journal of Nanoscience and Nanotechnology, 16(6), 5902–5912. https://doi.org/10.1166/jnn.2016.11029Valderrama, S., González, P., Caro, M., Ardila, N., Ariza, B., Gil, F., & Álvarez, C. (2016). Factores de riesgo para bacteriemia por Pseudomonas aeruginosa resistente a carbapenémicos adquirida en un hospital colombiano. Biomédica : Revista Del Instituto Nacional de Salud, 36.Vallabani, N. V. S., & Singh, S. (2018). Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. 3 Biotech, 8(6), 1–23. https://doi.org/10.1007/s13205-018-1286-zVellore, T., & Nadu, T. (2016). Cytotoxic Effect on Cancerous Cell Lines by Biologically Synthesized Silver Nanoparticles. 59(December), 1–8.Ventola, C. L. (2015). The antibiotic resistance crisis. P & T : A Peer-Reviewed Journal for Formulary Management, 40(4), 277–283. http://www.ncbi.nlm.nih.gov/pubmed/25859123Veprek, S., & Veprek-Heijman, M. G. J. (2012). Limits to the preparation of superhard nanocomposites: Impurities, deposition and annealing temperature. Thin Solid Films, 522, 274–282. https://doi.org/10.1016/j.tsf.2012.08.048Vera Nuñez, L. del C., & Tamo Cornejo, J. O. (2018). Biosíntesis y caracterización de nanopartículas de plata (AgNPs) CON Thelypteris glandulosolanosa (RAQUI-RAQUI) y evaluación de su efecto anticancerígeno en línea celular de cáncer de mama MCF-7.Wang, K., Ji, Q., Li, H., Guan, F., Zhang, D., Feng, H., & Fan, H. (2017). Synthesis and antibacterial activity of silver@carbon nanocomposites. Journal of Inorganic Biochemistry, 166, 64–67. https://doi.org/10.1016/j.jinorgbio.2016.11.002Yano, T., Tsuchimoto, Y., Zaccaria, R. P., Toma, A., Portela, A., & Hara, M. (2017). Enhanced optical magnetism for reversed optical binding forces between silicon nanoparticles in the visible region. Optics Express, 25(1), 431. https://doi.org/10.1364/oe.25.000431Yuan, Y. G., & Gurunathan, S. (2017). Combination of graphene oxide-silver nanoparticle nanocomposites and cisplatin enhances apoptosis and autophagy in human cervical cancer cells. International Journal of Nanomedicine, 12, 6537–6558. https://doi.org/10.2147/IJN.S125281Zhang, L., Wu, L., Si, Y., & Shu, K. (2018). Size-dependent cytotoxicity of silver nanoparticles to Azotobacter vinelandii: Growth inhibition, cell injury, oxidative stress and internalization. PLoS ONE, 13(12), 1–18. https://doi.org/10.1371/journal.pone.0209020Zhao, L., Li, H., Zhu, Z., Wakefield, M. R., Fang, Y., & Ye, Y. (2017). Genomic sequencing of a strain of Acinetobacter baumannii and potential mechanisms to antibiotics resistance. Infection, Genetics and Evolution, 50, 20–24. https://doi.org/10.1016/j.meegid.2017.02.001Ziabka, M., Dziadek, M., & Pielichowska, K. (2020). Surface and structural properties of medical acrylonitrile butadiene styrene modified with silver nanoparticles. Polymers, 12(1). https://doi.org/10.3390/polym12010197instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/