Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)Martínez Pachón, DianaVanegas Guerrero, JavierGómez Gómez, Alba Marcela2022-04-302022-04-302021-11-24http://repositorio.uan.edu.co/handle/123456789/6376The insecticide chlorpyrifos is used on a variety of agricultural crops around the world. and its large-scale application has caused environmental contamination. In this work, the degradation rate of chlorpyrifos by the rhizobacterium Pseudomonas aeruginosa (TN50) from potato (Solanum tuberosum) crop in minimal salt medium was determined. Genes and enzymes were detected in the genome of TN50 that may be associated with chlorpyrifos degradation and suggest that the bacterium may degrade the insecticide as a source of phosphorus and carbon. The chromatographic and liquid-liquid extraction technique for the monitoring of chlorpyrifos and its main degradation metabolite 3,5,6 trichloro-2-pyridinol was validated and the capacity of TN50 to use the insecticide as a sole carbon source was established. A 17.43% depletion of chlorpyrifos by P. aeruginosa was determined with glucose as an external carbon source and with prior metabolic activation in medium with glucose and chlorpyrifos, indicating that TN50 does not have the capacity to use the insecticide as a sole carbon source but can degrade the compound as an external nutrient source. Additional degradation studies could determine the potential of TN50 for bioremediation of this type of pollutants.El insecticida clorpirifos se usa en variedad de cultivos agrícolas de todo el mundo y su aplicación a gran escala ha provocado contaminación ambiental. En este trabajo se determina la tasa de degradación de clorpirifos por la rizobacteria Pseudomonas aeruginosa (TN50) proveniente de cultivo de papa (Solanum tuberosum) en medio mínimo de sales. Se detectaron genes y enzimas en el genoma de TN50 que pueden estar asociados a la degradación de clorpirifos y sugieren que la bacteria podría degradar el insecticida como fuente de fósforo y carbono. Se validó la técnica cromatográfica y de extracción líquido-líquido para el seguimiento de clorpirifos y su principal metabolito de degradación 3,5,6-tricloro-2-piridinol y se estableció la capacidad de TN50 para usar el insecticida como única fuente de carbono. Se determinó la disminución del 17.43% de clorpirifos por P. aeruginosa con glucosa como fuente externa de carbono y con previa activación metabólica en medio con glucosa y clorpirifos, lo que indica que TN50 no tiene la capacidad de utilizar el insecticida como única fuente de carbono pero puede llegar a degradar el compuesto como fuente externa de nutrientes. Estudios adicionales de degradación podrían determinar el potencial de TN50 para la biorremediación de este tipo de contaminantes.spaAcceso abiertoClorpirifos3,5,6-tricloro-2-piridinolDegradaciónPseudomonas aeruginosaGenesEnzimas540Degradación del insecticida clorpirifos por Pseudomona aeruginosa, rizobacteria aislada de cultivo de papa (Solanum tuberosum)Trabajo de grado (Pregrado y/o Especialización)Chlorpyrifos3,5,6-trichloro-2-pyridinolDegradationPseudomonas aeruginosaGenesEnzymesinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ministerio de Agricultura y Desarrollo Rural, Minagricultura (2020). CADENA DE LA PAPA Indicadores e instrumentos. Unknown. https://sioc.minagricultura.gov.co/Papa/Documentos/2020-06-30%20Cifras%20Sectoria les.pdf. Consultado Marzo de 2021Federación Colombiana de Productores de Papa, FEDEPAPA (2019). Informe de Gestión 2019. Unknown. https://fedepapa.com/wp-content/uploads/2021/09/BOLETIN-ECONOMICO-N%C2% B014.pdf. Consultado Noviembre de 2021Shabbir, M., Singh, M., Maiti, S., Kumar, S., & Saha, S. K. (2018). Removal enactment of organo-phosphorous pesticide using bacteria isolated from domestic sewage. Bioresource Technology, 263, 280–288. https://doi.org/10.1016/j.biortech.2018.04.122Aswathi, A., Pandey, A., & Sukumaran, R. K. (2019). Rapid degradation of the organophosphate pesticide – Chlorpyrifos by a novel strain of Pseudomonas nitroreducens AR-3. Bioresource Technology, 292(August), 122025. https://doi.org/10.1016/j.biortech.2019.122025Cámara de Comercio de Bogotá (CCB) (2015). Manual papa. Vicepresidencia de Fortalecimiento Empresarial; Programa de Apoyo Agrícola y Agroindustrial. Unknown. http://hdl.handle.net/11520/14306. Consultado Marzo de 2020Instituto Colombiano Agropecuario, ICA (2016). ESTADÍSTICAS DE COMERCIALIZACIÓN DE PLAGUICIDAS QUÍMICOS DE USO AGRÍCOLA 2016. Unknown. https://www.ica.gov.co/areas/agricola/servicios/regulacion-y-control-de-plaguicidas-qui micos/estadisticas/cartilla-plaguicidas-2016_22-01-18.aspx. Consultado Marzo de 2020Pohanish, R. P. (2015). C. In Sittig’s Handbook of Pesticides and Agricultural Chemicals. 2, 91–195. https://doi.org/10.1016/B978-1-4557-3148-0.00003-0Dow AgroSciences Colombia (2012). Lorsban, insecticida agrícola, concentrado emulsionante (EC). Etiqueta Web – Colombia.. Unknown. https://www.dowagro.com/content/dam/hdas/dowagro_colombia/pdfs/0901b80380988d 82.pdf. Consultado Marzo de 2020Singh, B. K., Walker, A., Morgan, J. A. W., & Wright, D. J. (2004). Biodegradation of chlorpyrifos by Enterobacter strain B-14 and its use in bioremediation of contaminated soils. Applied and Environmental Microbiology, 70(8), 4855–4863. https://doi.org/10.1128/AEM.70.8.4855-4863.2004Li, X., Jiang, J., Gu, L., Ali, S. W., He, J., & Li, S. (2008). Diversity of chlorpyrifos-degrading bacteria isolated from chlorpyrifos-contaminated samples. International Biodeterioration and Biodegradation, 62(4), 331–335. https://doi.org/10.1016/j.ibiod.2008.03.001instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/