Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)García Contreras, Germán AntonioSilva Yate, Edith Vanessa2021-02-222021-02-222020-06-03http://repositorio.uan.edu.co/handle/123456789/1599Cancer diagnostic methods are currently based on glycosylated biomarkers such as Tn antigen and can be detected by lectin-based technologies such as biosensors. However, there is a limitation due to the lack of commercial availability of lectins that recognize these structures, in addition to the fact that low stability may occur in biosensors due to the layers of proteins associated with them. In the present work we analyzed peanut lectin (Arachis Hypogaea), together with other lectins from legumes belonging to the Fabaceae family such as Glycine max (PDB 4D69), Wisteria Floribunda (PDB 5KXB), Psophocarpus Tetragonolobus (PDB 2D3S), and Isolectin B4 Vicia Villosa (1N47); where, based on their characteristics, peptides were designed and modeled and analyzed by means of molecular docking tests. Twelve candidate peptides were obtained for the library, eleven of which come from the structural segmentation of our protein of interest Arachis Hypogaea and one obtained from the comparisons and alignments of all the fabaceous proteins. The peptides analyzed by molecular docking were considered stable, of adequate length, with energy properties similar to peanut lectin when coupled with the antigen Tn, being considered excellent candidates to be later synthesized and analyzed for possible cancer diagnostic methods.Los métodos de diagnóstico del cáncer actualmente se basan en biomarcadores que se encuentran glucosilados como lo es el antígeno Tn y pueden ser detectados por tecnologías basadas en lectinas como son los biosensores. Sin embargo, hay una limitación por la falta de disponibilidad comercial de lectinas que reconocen estas estructuras, además de que puede presentarse baja estabilidad en los biosensores por las capas de proteínas asociadas a este. En el presente se trabajo se analizó la lectina de maní (Arachis Hypogaea), en conjunto de otras lectinas de leguminosas pertenecientes la familia Fabaceae como Glycine max (PDB 4D69), Wisteria Floribunda (PDB 5KXB), Psophocarpus Tetragonolobus (PDB 2D3S), e Isolectina B4 Vicia Villosa (1N47); en donde basándose en sus características se diseñaron y modelaron péptidos los cuales fueron analizados por medio de pruebas de docking molecular. Se obtuvieron doce péptidos candidatos para la librería los cuales, once provienen de la segmentación estructural de nuestra proteína de interés Arachis Hypogaea y uno obtenido en las comparaciones y alineamientos de todas las proteínas fabáceas. Los péptidos analizados mediante docking molecular se consideraron estables, de longitud adecuada, con propiedades energéticas similares a la lectina de maní cuando se encuentra acoplado con el antígeno Tn, considerándose así unos excelentes candidatos para que posteriormente puedan ser sintetizados y analizados para ser posibles métodos de diagnóstico de cáncer.spaAcceso abiertoAntígeno TnPNAMucinasGlicosilaciónCáncerAcetilgalactosaminaDiseño de secuencias peptídicas derivadas de la lectina de arachis hypogaea para el reconocimiento del antígeno TnTrabajo de grado (Pregrado y/o Especialización)Tn antigenPNAMucinsGlycosylationCancerAcetylgalactosamineinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2R. S. Singh, A. K. Tiwary, and J. F. Kennedy, “Lectins: Sources, activities, and applications,” Crit. Rev. Biotechnol., vol. 19, no. 2, pp. 145–178, 1999.R. Hamid, A. Masood, I. H. Wani, and S. Rafiq, “Lectins: Proteins with diverse applications,” J. Appl. Pharm. Sci., vol. 3, no. 4SUPPL.1, 2013.A. S. W. Ang, R. C. F. Cheung, X. Dan, Y. S. Chan, W. Pan, and T. B. Ng, “Purification and characterization of a glucosamine-binding antifungal lectin from phaseolus vulgaris cv. Chinese Pinto Beans with antiproliferative activity towards nasopharyngeal carcinoma cells,” Appl. Biochem. Biotechnol., vol. 172, no. 2, pp. 672–686, 2014.I. Lagarda-Diaz, A. Guzman-Partida, and L. Vazquez-Moreno, “Legume Lectins: Proteins with Diverse Applications,” Int. J. Mol. Sci., vol. 18, no. 6, p. 1242, Jun. 2017.L. Da Silva and M. Correia, “Plant lectins and Toll-like receptors: implications for therapy of microbial infections,” Front. Microbiol., vol. 5, no. 1, 2014.E. Hamed El S, M. M. Ibrahim El A, and M. Mounir S, “Antimicrobial Activities of Lectins Extracted from Some Cultivars of Phaseolus vulgaris Seeds,” J. Microb. Biochem. Technol., vol. 09, no. 03, pp. 109–116, 2017.N. Lannoo and E. J. M. Van Damme, “Lectin domains at the frontiers of plant defense,” Front. Plant Sci., vol. 5, no. August, pp. 1–16, 2014.X. Dan, W. Liu, and T. B. Ng, “Development and Applications of Lectins as Biological Tools in Biomedical Research,” Med. Res. Rev., vol. 36, no. 2, pp. 221–247, Mar. 2016.R. Graham, R. Beatson, V. Tajadura-Ortega, J. Taylor-Papadimitriou, and J. M. Burchell, “O-linked mucin-type glycosylation in breast cancer,” Biochem. Soc. Trans., vol. 46, no. 4, pp. 779–788, 2018.S. S. Pinho and C. A. Reis, “Glycosylation in cancer: mechanisms and clinical implications : Nature Reviews Cancer : Nature Publishing Group,” Nat. Rev. Cancer, vol. 15, pp. 540–555, 2015.A. Medeiros, N. Berois, M. Incerti, S. Bay, L. Franco Fraguas, and E. Osinaga, “A Tn antigen binding lectin from Myrsine coriacea displays toxicity in human cancer cell lines,” J. Nat. Med., vol. 67, no. 2, pp. 247–254, 2013.G. Poiroux, A. Barre, E. van Damme, H. Benoist, and P. Rougé, “Plant Lectins Targeting O-Glycans at the Cell Surface as Tools for Cancer Diagnosis, Prognosis and Therapy,” Int. J. Mol. Sci., vol. 18, no. 6, p. 1232, Jun. 2017.K. Fosgerau and T. Hoffmann, “Peptide therapeutics: current status and future directions.,” Drug Discov. Today, vol. 20, no. 1, pp. 122–8, 2015.M. Erak, K. Bellmann-Sickert, S. Els-Heindl, and A. G. Beck-Sickinger, “Peptide chemistry toolbox – Transforming natural peptides into peptide therapeutics,” Bioorganic Med. Chem., vol. 26, no. 10, pp. 2759–2765, 2018.L. Ning, B. He, P. Zhou, R. Derda, and J. Huang, “Molecular Design of Peptide-Fc Fusion Drugs,” Curr. Drug Metab., vol. 20, no. 3, pp. 203–208, Aug. 2018.A. Tyagi, P. Kapoor, R. Kumar, K. Chaudhary, A. Gautam, and G. P. S. Raghava, “In Silico Models for Designing and Discovering Novel Anticancer Peptides,” Sci. Rep., vol. 3, p. 2984, Oct. 2013.K. Valko, G. Ivanova-Berndt, P. Beswick, M. Kindey, and D. Ko, “Application of biomimetic HPLC to estimate lipophilicity, protein and phospholipid binding of potential peptide therapeutics,” ADMET DMPK, vol. 6, no. 2, pp. 162–175, 2018.G. Guidotti, L. Brambilla, and D. Rossi, “Exploring Novel Molecular Targets for the Treatment of High-Grade Astrocytomas Using Peptide Therapeutics: An Overview.,” Cells, vol. 9, no. 2, 2020.J. Sun, Q. L. Yang, J. Bi, C. S. Zhang, L. N. Yu, and F. Zhu, “Purification and Characterization of a Natural Lectin from the Seed of Peanut Arachis hypogaea,” Adv. Mater. Res., vol. 152–153, pp. 1499–1504, 2010.R. Banerjee, K. Das, R. Ravishankar, K. Suguna, A. Surolia, and M. Vijayan, “Conformation, protein-carbohydrate interactions and a novel subunit association in the refined structure of peanut lectin-lactose complex,” J. Mol. Biol., vol. 259, no. 2, pp. 281–296, 1996.P. T. Campana, L. R. S. Barbosa, and R. Itri, “Conformational stability of peanut agglutinin using small angle X-ray scattering,” Int. J. Biol. Macromol., vol. 48, no. 3, pp. 398–402, 2011.A. Movafagh et al., “The structure Biology and Application of Phytohemagglutinin (PHA) in Phytomedicine: With special up-to-date references to lectins,” J. Paramed. Sci. Vol, vol. 4, no. Winter, pp. 2008–4978, 2013.Y. Reisner, G. Gachelin, P. Dubois, J. F. Nicolas, N. Sharon, and F. Jacob, “Interaction of peanut agglutinin, a lectin specific for nonreducing terminal d-galactosyl residues, with embryonal carcinoma cells,” Dev. Biol., vol. 61, no. 1, pp. 20–27, 1977.H. Tateno et al., “Glycome diagnosis of human induced pluripotent stem cells using lectin microarray,” J. Biol. Chem., vol. 286, no. 23, pp. 20345–20353, 2011.P. M. Drake et al., “Lectin chromatography/mass spectrometry discovery workflow identifies putative biomarkers of aggressive breast cancers,” J. Proteome Res., vol. 11, no. 4, pp. 2508–2520, 2012.S. Sakuma et al., “Detection of early colorectal cancer imaged with peanut agglutinin-immobilized fluorescent nanospheres having surface poly(N-vinylacetamide) chains,” Eur. J. Pharm. Biopharm., vol. 74, no. 3, pp. 451–460, 2010.R. Singh, L. Nawale, D. Sarkar, and C. G. Suresh, “Two chitotriose-specific lectins show anti-angiogenesis, induces caspase-9-mediated apoptosis and early arrest of pancreatic tumor cell cycle,” PLoS One, vol. 11, no. 1, pp. 1–18, 2016.T. Ju et al., “Tn and sialyl-Tn antigens, aberrant O-glycomics as human disease markers,” Proteomics Clin. Appl., vol. 7, pp. 618–631, 2013.K. L. Bicker et al., “Synthetic lectin arrays for the detection and discrimination of cancer associated glycans and cell lines,” Chem. Sci., vol. 3, no. 4, pp. 1147–1156, 2012.H. A. Badr, A. I. Elsayed, H. Ahmed, M. V. Dwek, C. Z. Li, and L. B. Djansugurova, “Preferential lectin binding of cancer cells upon sialic acid treatment under nutrient deprivation,” Appl. Biochem. Biotechnol., vol. 171, no. 4, pp. 963–974, 2013.D. Zupančič, M. E. Kreft, and R. Romih, “Selective binding of lectins to normal and neoplastic urothelium in rat and mouse bladder carcinogenesis models,” Protoplasma, vol. 251, no. 1, pp. 49–59, 2014.K. Nakajima et al., “Establishment of new predictive markers for distant recurrence of colorectal cancer using lectin microarray analysis,” Cancer Med., vol. 4, no. 2, pp. 293–302, 2015.K. Ikemoto, K. Shimizu, K. Ohashi, Y. Takeuchi, M. Shimizu, and N. Oku, “Bauhinia purprea agglutinin-modified liposomes for human prostate cancer treatment,” Cancer Sci., vol. 107, no. 1, pp. 53–59, 2016.N. Vega and G. Pérez, “Isolation and characterisation of a Salvia bogotensis seed lectin specific for the Tn antigen,” Phytochemistry, vol. 67, no. 4, pp. 347–355, 2006.M. Kailemia, D. Park, and C. Lebrilla, “Glycans and Glycoproteins as specific biomarkers for Cncer,” Anal. Bioanal. Chem., pp. 395–410, 2017.M. L. S. Silva, Lectin biosensors in cancer glycan biomarker detection, 1st ed., vol. 93. Elsevier Inc., 2019.H. Yu, J. Shu, and Z. Li, “Lectin microarrays for glycoproteomics: an overview of their use and potential,” Expert Rev. Proteomics, vol. 17, no. 1, pp. 27–39, 2020D. Pihíková, P. Kasák, and J. Tkac, “Glycoprofiling of cancer biomarkers: Label-free electrochemical lectin-based biosensors,” Open Chem., vol. 13, no. 1, pp. 636–655, 2015.H. A. Badr et al., “Lectin approaches for glycoproteomics in FDA-approved cancer biomarkers,” Expert Rev. Proteomics, vol. 11, no. 2, pp. 227–236, 2014.R. Etzioni et al., “The case for early detection,” Nat. Rev. Cancer, vol. 3, no. 4, pp. 243–252, 2003.“Cáncer: Organizacion Mundial de la Salud.” [Online]. Available: https://www.who.int/es/news-room/fact-sheets/detail/cancer. [Accessed: 26-Mar-2020].National Cancer Intelligence Network., “Routes to diagnosis,” 2016. [Online]. Available: http://www.ncin.org.uk/publications/routes_to_diagnosis. [Accessed: 26-Apr-2020].A. Caporale et al., “Synthetic Peptide Libraries. From Random Mixtures to In Vivo Testing,” Curr. Med. Chem., vol. 25, Sep. 2018.D. A. Araripe et al., “Partial characterization and immobilization in CNBr-activated Sepharose of a native lectin from Platypodium elegans seeds (PELa) and comparative study of edematogenic effect with the recombinant form,” Int. J. Biol. Macromol., vol. 102, pp. 323–330, 2017.“El cáncer - Instituto Nacional del Cáncer.” [Online]. Available: https://www.cancer.gov/espanol/cancer. [Accessed: 26-Mar-2020].“Global Cancer Observatory.” [Online]. Available: https://gco.iarc.fr/. [Accessed: 26-Mar-2020].D. Armando and R. Frenchy, “Diseño , modelamiento y evaluación in silico de péptidos que reconocen antígeno Tn,” 2019.E. Gasteiger et al., “Protein Analysis Tools on the ExPASy Server 571 571 From: The Proteomics Protocols Handbook Protein Identification and Analysis Tools on the ExPASy Server,” 2005.