Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)Jaimes, GustavoMonroy, DianaJunco Arenas, Yuli AlexandraSotelo Cancelado, Geider HarrinsonCabrera Ordoñez, Lucy KarolinaChaverra Castellar, Marian Janeth2022-04-292022-04-292021-11-18http://repositorio.uan.edu.co/handle/123456789/6365This study was carried out by using a sample of sixty transversal -section orthodontic wires, 0.017x 0.025 inches gauge; thirty were GUMMETAL® alloy and thirty were thermoactivated CuNiTi in order to evaluate and compare variables by load-deflection and Stress -Strain. Samples were evaluated and compared by tensile tests on the Shimadzu® AG-IS universal mechanical testing machine. It was possible to establish that GUMMETAL® has a much higher elastic limit; with regard to the force, it was possible to determine that GUMMETAL® shows a lower and constant force; with the variable 'stiffness' CuNiTi showed a low but less stable stiffness, while GUMMETAL® on the contrary showed a higher stiffness but at the same time more constant; CuNiTi showed a much higher but more unstable range, and GUMMETAL® showed a much smaller but more stable range.Se realizó con 60 muestras de alambre ortodóntico 0.017x 0.025 pulgadas; 30 correspondían a la aleación GUMMETAL® y 30 a CuNiTi termoactivado para analizar y comparar las variables mediante ensayos de Carga-Deflexión y Tensión-Esfuerzo, en la máquina universal de ensayos mecánicos Shimadzu AG-IS. Se estableció que el GUMMETAL® presenta un límite elástico mucho mayor; el GUMMETAL® muestra una fuerza más baja y constante; el CuNiTi mostro una rigidez baja pero menos estable, el GUMMETAL® por el contrario mostró una rigidez más alta y estable; el CuNiTi mostró un rango mucho mayor aunque más inestable y el GUMMETAL® mostró un rango mucho menor pero más estable. Conclusiones: el CuNiTi presentó valores más altos en 3 de las 4 variables evaluadas pero es más inestable que el GUMMETAL®, siendo este último más constante en la entrega de fuerzas menores y lo hace ideal para las primeras etapas de tratamiento de ortodoncia.spaAcceso abiertoComparaciónPropiedades Mecánicas,Carga,Deflexión,Alambres de Ortodoncia610Comparación de las Propiedades Mecánicas Carga- Deflexión y Tensión - Esfuerzo de los Alambres de Ortodoncia GUMMETAL® y CuNiTiTrabajo de grado (Pregrado y/o Especialización)Comparison,Mechanical Propertis,Load,Deflection,Orthodontic Wiresinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Arango Santander, S., y Ramírez Vega, C. (2016). Titanio: aspectos del material para uso en ortodoncia. Revista Nacional De Odontología, 12(23), 63-71. https://doi.org/10.16925/od.v12i23.1423Atik, E., Gorucu-Coskuner, H., Akarsu-Guven, B., y Taner, T. (2019). A comparative assessment of clinical efficiency between premium heat-activated copper nickel-titanium and superelastic nickel-titanium archwires during initial orthodontic alignment in adolescents: a randomized clinical trial. Progress in Orthodontics, 20(1). https://doi.org/10.1186/s40510-019-0299-4Aydın, B., Şenışık, N. E., y Koşkan, Ö. (2018). Evaluation of the alignment efficiency of nickel-titanium and copper-nickel-titanium archwires in patients undergoing orthodontic treatment over a 12-week period: A single-center, randomized controlled clinical trial. The Korean Journal of Orthodontics, 48(3), 153. https://doi.org/10.4041/kjod.2018.48.3.153Burstone, C. J., y Kwangchul Choy. (2015). The biomechanical foundation of clinical orthodontics. Quintessence Publishing Co, Inc. https://www.quintessence-publishing.com/gbr/en/product/the-biomechanical-foundation-of-clinical-orthodonticsChang, H.-P., y Tseng, Y.-C. (2018). A novel β-titanium alloy orthodontic wire. The Kaohsiung Journal of Medical Sciences, 34(4), 202–206. https://doi.org/10.1016/j.kjms.2018.01.010Fischer Brandies, H., Es Souni, M., Kock, N., Raetzke, K., y Bock, O. (2003). Transformation Behavior, Chemical Composition, Surface Topography and Bending Properties of Five Selected 0.016’’ × 0.022’’ NiTi Archwires. Journal of OrofacialGok, F., Buyuk, S. K., Ozkan, S., & Benkli, Y. A. (2018). Comparison of arch width and depth changes and pain/discomfort with conventional and copper Ni-Ti archwires for mandibular arch alignment. Journal of the World Federation of Orthodontists, 7(1), 24–28. https://doi.org/10.1016/j.ejwf.2018.01.001Golasiński, K., Pieczyska, E., Maj, M., Staszczak, M., Świec, P., Furuta, T., y Kuramoto, S. (2020). Investigation of strain rate sensitivity of GUMMETAL® under tension using digital image correlation. Archives of Civil and Mechanical Engineering, 20(2). https://doi.org/10.1007/s43452-020-00055-9Gravina, M. A., Brunharo, I. H. V. P., Canavarro, C., Elias, C. N., y Quintão, C. C. A. (2013). Mechanical properties of NiTi and CuNiTi shape-memory wires used in orthodontic treatment. Part 1: stress-strain tests. Dental Press Journal of Orthodontics, 18(4), 35–42. https://doi.org/10.1590/s2176-94512013000400007Gravina, M. A., Canavarro, C., Elias, C. N., Chaves, M. das G. A. M., Brunharo, I. H. V. P., y Quintão, C. C. A. (2014). Mechanical properties of NiTi and CuNiTi wires used in orthodontic treatment. Part 2: Microscopic surface appraisal and metallurgical characteristics. Dental Press Journal of Orthodontics, 19(1), 69–76. https://doi.org/10.1590/2176-9451.19.1.069-076.oarinstname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/